#Setup
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(completejourney)
## Welcome to the completejourney package! Learn more about these data
## sets at http://bit.ly/completejourney.
df <- transactions_sample %>%
inner_join(products, by = "product_id") %>%
inner_join(demographics, by = "household_id")
#Plot 1
top3_depts <- df %>%
count(department, sort = TRUE) %>%
slice_head(n = 3) %>%
pull(department)
df %>%
filter(department %in% top3_depts, sales_value > 0) %>%
ggplot(aes(sales_value)) +
geom_histogram(bins = 40, fill = "steelblue", color = "white") +
facet_wrap(~ department, nrow = 1, scales = "free_y") +
labs(
title = "Typical sales amounts depending on department",
subtitle = "Distribution of transaction-level sales values in the three busiest departments",
x = "Sales value ($)", y = "Count of transactions",
caption = "Data: Complete Journey (transactions_sample + products)."
) +
scale_x_continuous(labels = scales::dollar) +
theme_minimal(base_size = 12)
#Plot 2
df %>%
filter(!is.na(brand)) %>%
ggplot(aes(brand)) +
geom_bar(fill = "gray40") +
labs(
title = "Brand mix across all transactions",
subtitle = "Count of items purchased by brand type",
x = "Brand", y = "Number of items",
caption = "Data: Complete Journey (transactions_sample + products)."
) +
theme_minimal(base_size = 12)
#Plot 3
df %>%
filter(quantity > 0, sales_value > 0, !is.na(brand)) %>%
ggplot(aes(quantity, sales_value, color = brand)) +
geom_point(alpha = 0.3) +
labs(
title = "Quantity vs. sales value",
subtitle = "Larger quantities tend to correspond to higher spend; color shows brand on each transaction",
x = "Quantity (units in transaction)", y = "Sales value ($)",
color = "Brand",
caption = "Data: Complete Journey (transactions_sample + products + demographics)."
) +
scale_y_continuous(labels = scales::dollar) +
theme_minimal(base_size = 12)