df_customer <- read.csv("df_customer.csv")
head(df_customer)
##   X ID_Pelanggan Jenis_Kelamin Tempat_Tinggal Penghasilan Total_Belanja
## 1 1      ID00031     Laki-laki           Desa     2227350       2563031
## 2 2      ID00079     Perempuan           Kota     9047608       8369550
## 3 3      ID00051     Perempuan           Kota     9735540       8053033
## 4 4      ID00014     Laki-laki           Kota    13510126       9799876
## 5 5      ID00067     Perempuan           Desa     7773498       6982081
## 6 6      ID00042     Laki-laki           Desa     6666740       4782002
nrow(df_customer)
## [1] 300
length(unique(df_customer$ID_Pelanggan))
## [1] 94
unique(df_customer$ID_Pelanggan)
##  [1] "ID00031" "ID00079" "ID00051" "ID00014" "ID00067" "ID00042" "ID00050"
##  [8] "ID00043" "ID00025" "ID00090" "ID00091" "ID00069" "ID00057" "ID00092"
## [15] "ID00009" "ID00093" "ID00099" "ID00072" "ID00026" "ID00007" "ID00083"
## [22] "ID00036" "ID00078" "ID00081" "ID00076" "ID00015" "ID00032" "ID00041"
## [29] "ID00074" "ID00023" "ID00027" "ID00060" "ID00053" "ID00096" "ID00038"
## [36] "ID00089" "ID00034" "ID00063" "ID00013" "ID00082" "ID00097" "ID00021"
## [43] "ID00047" "ID00095" "ID00016" "ID00094" "ID00006" "ID00086" "ID00039"
## [50] "ID00004" "ID00052" "ID00022" "ID00087" "ID00035" "ID00040" "ID00030"
## [57] "ID00012" "ID00064" "ID00071" "ID00085" "ID00037" "ID00008" "ID00098"
## [64] "ID00084" "ID00046" "ID00017" "ID00062" "ID00054" "ID00024" "ID00005"
## [71] "ID00070" "ID00055" "ID00075" "ID00048" "ID00077" "ID00056" "ID00068"
## [78] "ID00001" "ID00088" "ID00020" "ID00049" "ID00059" "ID00011" "ID00066"
## [85] "ID00044" "ID00045" "ID00033" "ID00010" "ID00058" "ID00061" "ID00029"
## [92] "ID00073" "ID00018" "ID00002"
sort(table(df_customer$ID_Pelanggan), decreasing = TRUE) [1:3]
## 
## ID00007 ID00025 ID00089 
##       9       7       7
aggregate(Penghasilan ~ Jenis_Kelamin, data = df_customer, mean)
##   Jenis_Kelamin Penghasilan
## 1     Laki-laki     8880902
## 2     Perempuan     8505199
aggregate(Total_Belanja ~ Jenis_Kelamin, data = df_customer, mean)
##   Jenis_Kelamin Total_Belanja
## 1     Laki-laki       6034728
## 2     Perempuan       7114786
aggregate(Penghasilan ~ Tempat_Tinggal, data = df_customer, mean)
##   Tempat_Tinggal Penghasilan
## 1           Desa     6249122
## 2           Kota     9878685
aggregate(Total_Belanja ~ Tempat_Tinggal, data= df_customer, mean)
##   Tempat_Tinggal Total_Belanja
## 1           Desa       5022231
## 2           Kota       7520118
df_customer [order(-df_customer$Total_Belanja), c("ID_Pelanggan", "Total_Belanja")]
##     ID_Pelanggan Total_Belanja
## 76       ID00034      11626302
## 175      ID00011      11527638
## 228      ID00057      11031197
## 287      ID00093      10984825
## 33       ID00007      10846012
## 208      ID00023      10739381
## 26       ID00036      10641105
## 252      ID00064      10615150
## 204      ID00074      10556216
## 72       ID00039      10344433
## 101      ID00079      10241993
## 11       ID00090      10137674
## 57       ID00025       9945372
## 278      ID00045       9928570
## 275      ID00061       9924147
## 167      ID00093       9890886
## 86       ID00087       9872391
## 132      ID00005       9817378
## 4        ID00014       9799876
## 224      ID00090       9796996
## 64       ID00060       9758749
## 264      ID00025       9710543
## 164      ID00048       9695153
## 113      ID00046       9689403
## 246      ID00084       9639414
## 49       ID00069       9594128
## 282      ID00053       9589712
## 126      ID00023       9531823
## 182      ID00046       9516174
## 15       ID00057       9484196
## 42       ID00053       9466583
## 142      ID00089       9423949
## 211      ID00057       9287318
## 12       ID00091       9275845
## 75       ID00050       9201734
## 135      ID00024       9144955
## 19       ID00099       9141069
## 107      ID00050       9080252
## 179      ID00085       9009507
## 174      ID00084       8951249
## 111      ID00076       8931677
## 239      ID00026       8922412
## 298      ID00002       8895933
## 168      ID00036       8895365
## 193      ID00040       8798502
## 270      ID00018       8798501
## 79       ID00069       8784311
## 122      ID00087       8768903
## 92       ID00030       8685167
## 279      ID00092       8612837
## 244      ID00026       8604458
## 30       ID00076       8595100
## 40       ID00053       8582735
## 116      ID00046       8578249
## 39       ID00060       8558413
## 283      ID00063       8500700
## 125      ID00079       8492008
## 61       ID00041       8371463
## 2        ID00079       8369550
## 87       ID00035       8307214
## 99       ID00067       8304569
## 273      ID00006       8268965
## 21       ID00026       8232816
## 300      ID00063       8211115
## 127      ID00026       8161496
## 90       ID00012       8098488
## 223      ID00087       8072625
## 3        ID00051       8053033
## 222      ID00025       7994421
## 235      ID00090       7993933
## 78       ID00013       7946382
## 140      ID00036       7942215
## 288      ID00017       7936955
## 243      ID00060       7915300
## 89       ID00030       7896921
## 220      ID00026       7895296
## 32       ID00032       7884152
## 274      ID00071       7876640
## 123      ID00007       7857641
## 63       ID00090       7826544
## 269      ID00045       7825427
## 236      ID00058       7808366
## 294      ID00024       7804955
## 23       ID00042       7798760
## 201      ID00007       7780053
## 191      ID00087       7760180
## 261      ID00074       7731739
## 16       ID00092       7720654
## 137      ID00021       7717504
## 59       ID00021       7714018
## 221      ID00007       7655665
## 84       ID00032       7640093
## 55       ID00097       7636699
## 20       ID00072       7627379
## 143      ID00039       7622355
## 284      ID00071       7616089
## 68       ID00006       7566649
## 66       ID00016       7515644
## 157      ID00030       7512473
## 69       ID00072       7490116
## 170      ID00022       7485827
## 118      ID00035       7484242
## 117      ID00054       7476936
## 194      ID00040       7410923
## 218      ID00025       7379123
## 163      ID00075       7365112
## 214      ID00053       7299584
## 285      ID00084       7261831
## 105      ID00051       7261072
## 266      ID00055       7214061
## 150      ID00077       7194070
## 18       ID00093       7188080
## 77       ID00004       7187773
## 241      ID00085       7184097
## 172      ID00042       7166426
## 106      ID00074       7154243
## 250      ID00093       7140298
## 169      ID00052       7122143
## 147      ID00071       7121152
## 226      ID00084       7117614
## 290      ID00002       7097745
## 47       ID00034       7064321
## 54       ID00082       7021800
## 5        ID00067       6982081
## 151      ID00083       6974488
## 81       ID00052       6971142
## 233      ID00091       6935452
## 253      ID00037       6931584
## 129      ID00007       6921826
## 291      ID00049       6919859
## 44       ID00096       6911517
## 43       ID00027       6901502
## 195      ID00010       6899791
## 14       ID00091       6841960
## 183      ID00070       6805522
## 267      ID00089       6787182
## 173      ID00059       6749874
## 88       ID00040       6745396
## 141      ID00083       6741328
## 188      ID00045       6730077
## 299      ID00037       6719412
## 272      ID00031       6699765
## 249      ID00031       6686485
## 131      ID00042       6678890
## 209      ID00026       6663821
## 205      ID00024       6661848
## 176      ID00055       6646206
## 13       ID00069       6582132
## 70       ID00086       6566917
## 83       ID00089       6556704
## 219      ID00052       6548809
## 185      ID00044       6527872
## 281      ID00053       6524073
## 202      ID00058       6514985
## 197      ID00072       6500860
## 260      ID00004       6476914
## 296      ID00067       6462534
## 22       ID00007       6448525
## 190      ID00016       6446238
## 230      ID00023       6436205
## 146      ID00009       6390543
## 213      ID00010       6347690
## 166      ID00067       6344949
## 110      ID00086       6339596
## 215      ID00054       6329024
## 9        ID00014       6315967
## 152      ID00056       6314093
## 60       ID00079       6296779
## 234      ID00001       6288533
## 238      ID00029       6280030
## 138      ID00055       6262374
## 52       ID00063       6261498
## 65       ID00095       6259431
## 242      ID00007       6243561
## 231      ID00014       6229499
## 29       ID00043       6226134
## 67       ID00094       6224021
## 280      ID00063       6201985
## 198      ID00082       6194282
## 62       ID00047       6172545
## 85       ID00025       6168863
## 232      ID00006       6134541
## 128      ID00032       6122424
## 36       ID00074       6119057
## 27       ID00078       6117587
## 177      ID00008       6100858
## 17       ID00009       6096816
## 292      ID00002       6090917
## 45       ID00038       6084854
## 100      ID00023       6033115
## 247      ID00006       6027924
## 186      ID00032       6011391
## 56       ID00091       5990469
## 251      ID00017       5988984
## 145      ID00090       5987338
## 119      ID00094       5983600
## 31       ID00015       5977619
## 34       ID00009       5955753
## 103      ID00037       5952935
## 256      ID00035       5952082
## 187      ID00036       5946104
## 120      ID00079       5944523
## 112      ID00084       5892759
## 161      ID00088       5826813
## 46       ID00089       5776859
## 180      ID00066       5731064
## 192      ID00033       5704286
## 171      ID00049       5695306
## 121      ID00024       5654997
## 82       ID00022       5602663
## 91       ID00031       5581822
## 293      ID00013       5581775
## 73       ID00031       5581673
## 148      ID00098       5535035
## 254      ID00057       5530567
## 229      ID00073       5490472
## 258      ID00033       5476852
## 24       ID00009       5448759
## 53       ID00013       5438461
## 134      ID00016       5436492
## 160      ID00016       5433512
## 80       ID00025       5423813
## 268      ID00085       5411875
## 124      ID00093       5383301
## 97       ID00096       5369782
## 149      ID00048       5333229
## 257      ID00089       5259961
## 153      ID00039       5249938
## 35       ID00041       5228866
## 196      ID00089       5221740
## 289      ID00097       5214133
## 286      ID00082       5164174
## 259      ID00066       5157567
## 10       ID00025       5106141
## 58       ID00038       5094570
## 265      ID00008       5052071
## 248      ID00094       5043885
## 139      ID00075       5002921
## 178      ID00046       4993380
## 51       ID00076       4968714
## 189      ID00014       4947617
## 104      ID00008       4922220
## 255      ID00020       4877976
## 159      ID00089       4797439
## 133      ID00070       4785421
## 154      ID00068       4784177
## 6        ID00042       4782002
## 8        ID00043       4779797
## 212      ID00029       4723412
## 297      ID00082       4720756
## 95       ID00014       4698681
## 158      ID00094       4695264
## 200      ID00007       4677575
## 102      ID00085       4672343
## 207      ID00054       4622512
## 199      ID00009       4605777
## 114      ID00017       4520756
## 41       ID00007       4498392
## 203      ID00061       4444803
## 38       ID00027       4389470
## 25       ID00083       4381195
## 262      ID00097       4292393
## 7        ID00050       4286283
## 109      ID00074       4252327
## 144      ID00054       4240845
## 155      ID00001       4230664
## 216      ID00077       4224491
## 165      ID00020       4222089
## 210      ID00033       4173259
## 96       ID00093       4171074
## 237      ID00081       4141607
## 184      ID00072       4111994
## 295      ID00049       4086854
## 48       ID00093       4072657
## 28       ID00081       4062511
## 225      ID00032       4026738
## 71       ID00086       4000684
## 271      ID00042       3999429
## 245      ID00041       3856989
## 108      ID00098       3834102
## 263      ID00005       3810681
## 37       ID00023       3777745
## 98       ID00071       3749631
## 276      ID00048       3627563
## 93       ID00064       3624444
## 136      ID00032       3616787
## 156      ID00040       3565274
## 227      ID00024       3527189
## 162      ID00054       3396041
## 74       ID00081       3358968
## 240      ID00027       3321927
## 130      ID00027       3224369
## 277      ID00017       3196313
## 115      ID00062       3159885
## 206      ID00063       3098677
## 181      ID00077       3006345
## 217      ID00011       2886327
## 94       ID00099       2752967
## 1        ID00031       2563031
## 50       ID00072       2534171
head(10)
## [1] 10
table(df_customer$Jenis_Kelamin)
## 
## Laki-laki Perempuan 
##       121       179
df_customer$Kategori_Penghasilan <- cut(df_customer$Penghasilan,breaks = c(-Inf, 5000000, 10000000, Inf), labels = c("Rendah", "Menengah", "Tinggi"))
table(df_customer$Kategori_Penghasilan)
## 
##   Rendah Menengah   Tinggi 
##       27      175       98

1. Pelanggan yang paling sering membeli dengan total belanja > 5.000.000

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
q11 <- df_customer %>%
  filter(Total_Belanja > 5000000) %>%
  count(ID_Pelanggan, sort = TRUE) %>%
  slice_head(n=5)
q11
##   ID_Pelanggan n
## 1      ID00007 7
## 2      ID00025 7
## 3      ID00026 6
## 4      ID00089 6
## 5      ID00053 5

2. Ada berapa banyak perempuan di kota yang berbelanja lebih dari 5x

q22 <- df_customer %>%
  filter(Jenis_Kelamin == "Perempuan", Tempat_Tinggal == "Kota") %>%
  count(ID_Pelanggan) %>%
  filter(n > 5) %>%
  summarise(jumlah = n())
q22
##   jumlah
## 1      0

3. Pelanggan yang paling sering membeli dengan penghasilan > 5.000.000

q33 <- df_customer %>%
  filter(Penghasilan > 5000000) %>%
  count(ID_Pelanggan, sort = TRUE) %>%
  slice_head(n=1)
q33
##   ID_Pelanggan n
## 1      ID00007 9

4. Berjenis kelamin apa pelanggan yang tinggal di desa dengan total belanja > 5.000.000

q44 <- df_customer %>%
  filter(Tempat_Tinggal == "Desa", Total_Belanja > 5000000) %>%
  count(Jenis_Kelamin)
q44
##   Jenis_Kelamin  n
## 1     Laki-laki 10
## 2     Perempuan 37

5. Berpenghasilan berapa pelanggan yang tinggal di desa namun memiliki total belanja > 5.000.000

q55 <- df_customer %>%
  filter(Tempat_Tinggal == "Desa", Total_Belanja > 5000000) %>%
  select(ID_Pelanggan, Penghasilan) %>%
  head(10)
q55
##    ID_Pelanggan Penghasilan
## 1       ID00067     7773498
## 2       ID00014     6776730
## 3       ID00027     8108645
## 4       ID00089     9032981
## 5       ID00034     5616450
## 6       ID00013     4481204
## 7       ID00091     6128487
## 8       ID00038     5947963
## 9       ID00041     9231091
## 10      ID00047     5940612