# load packages
library(tidyverse)
library(tidyquant)
1 Get stock prices and convert to returns
Ra <- c("NVDA", "AMD", "INTC") %>%
tq_get("stock.prices",
from = "2022-01-01") %>%
group_by("symbol") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 45 × 3
## # Groups: "symbol" [1]
## `"symbol"` date Ra
## <chr> <date> <dbl>
## 1 symbol 2022-01-31 0.506
## 2 symbol 2022-02-28 -0.0155
## 3 symbol 2022-03-31 0.0390
## 4 symbol 2022-04-29 -0.120
## 5 symbol 2022-05-31 0.0271
## 6 symbol 2022-06-30 -0.158
## 7 symbol 2022-07-29 -0.0294
## 8 symbol 2022-08-31 -0.112
## 9 symbol 2022-09-30 -0.193
## 10 symbol 2022-10-31 0.103
## # ℹ 35 more rows
2 Get basline and convert to returns
Rb <- c("^IXIC") %>%
tq_get("stock.prices",
from = "2022-01-01") %>%
group_by("symbol") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 45 × 3
## # Groups: "symbol" [1]
## `"symbol"` date Rb
## <chr> <date> <dbl>
## 1 symbol 2022-01-31 -0.101
## 2 symbol 2022-02-28 -0.0343
## 3 symbol 2022-03-31 0.0341
## 4 symbol 2022-04-29 -0.133
## 5 symbol 2022-05-31 -0.0205
## 6 symbol 2022-06-30 -0.0871
## 7 symbol 2022-07-29 0.123
## 8 symbol 2022-08-31 -0.0464
## 9 symbol 2022-09-30 -0.105
## 10 symbol 2022-10-31 0.0390
## # ℹ 35 more rows
3 Join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 45 × 5
## `"symbol".x` date Ra `"symbol".y` Rb
## <chr> <date> <dbl> <chr> <dbl>
## 1 symbol 2022-01-31 0.506 symbol -0.101
## 2 symbol 2022-02-28 -0.0155 symbol -0.0343
## 3 symbol 2022-03-31 0.0390 symbol 0.0341
## 4 symbol 2022-04-29 -0.120 symbol -0.133
## 5 symbol 2022-05-31 0.0271 symbol -0.0205
## 6 symbol 2022-06-30 -0.158 symbol -0.0871
## 7 symbol 2022-07-29 -0.0294 symbol 0.123
## 8 symbol 2022-08-31 -0.112 symbol -0.0464
## 9 symbol 2022-09-30 -0.193 symbol -0.105
## 10 symbol 2022-10-31 0.103 symbol 0.0390
## # ℹ 35 more rows
4 Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 1 × 17
## ActivePremium Alpha AlphaRobust AnnualizedAlpha Beta `Beta-` `Beta-Robust`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -0.0527 0.0086 -0.0215 0.108 0.754 -0.108 0.994
## # ℹ 10 more variables: `Beta+` <dbl>, `Beta+Robust` <dbl>, BetaRobust <dbl>,
## # Correlation <dbl>, `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, `R-squaredRobust` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>
Which stock has a posstivly skewed distribution of return
RaRb_skewness <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = BetaCoSkewness)
RaRb_skewness
## # A tibble: 1 × 1
## BetaCoSkewness.1
## <dbl>
## 1 -0.102