###1. rename(): (4 points) Rename the “Film” column to “movie_title” and “Year” to “release_year”.

question_one <- movies %>%
  rename(movie_title  = Film , release_year = Year)
head(question_one) 
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

###2. select(): (4 points) Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

question_two <- question_one %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`)
head(question_two) 
## # A tibble: 6 × 5
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60

###3. filter(): (4 points) Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

question_three <- question_two %>% 
  filter(release_year > 2000 , `Rotten Tomatoes %` > 80)
head(question_three,6) 
## # A tibble: 6 × 5
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93

###4. mutate(): (4 points) Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

question_four <- question_three %>% 
  mutate(Profitability_millions = Profitability *1e6)
head(question_four)
## # A tibble: 6 × 6
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
## # ℹ 1 more variable: Profitability_millions <dbl>

###5. arrange(): (3 points) Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

question_five <- question_four %>% 
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(question_five, 6)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

###6. Combining functions: (3 points) Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

question_six <- movies %>% 
  rename(movie_title  = Film , release_year = Year) %>% 
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>% 
  filter(release_year > 2000 , `Rotten Tomatoes %` > 80) %>% 
  mutate(Profitability_millions = Profitability *1e6) %>% 
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(question_six, 6)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

###7. 7. Interpret question 6 (1 point) From the resulting data, are the best movies the most popular? #No, There is no clear pattern #EXTRA CREDIT (4 points) Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

 extra_credit <- question_four %>%
  group_by(Genre) %>%
  summarize(
    avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    avg_profitability_millions = mean(Profitability_millions, na.rm = TRUE),
    n = n()
  ) %>%
  arrange(desc(avg_rating), desc(avg_profitability_millions))

head(extra_credit, 6)  
## # A tibble: 6 × 4
##   Genre     avg_rating avg_profitability_millions     n
##   <chr>          <dbl>                      <dbl> <int>
## 1 Romence         93                     8744706.     1
## 2 Animation       92.5                   2130856.     2
## 3 Comedy          89.3                   5038005.     3
## 4 comedy          87                     8096000      1
## 5 Romance         87                     5544871.     2
## 6 Drama           85.7                   2197608.     3