Rationale

Cultivation theory suggests that people who consume heavy amounts of media exposure end up with a distorted, media-constructed worldview that differs from the worldview of people who consume media lightly.

Considering this theory, depending on how much an individual watches TV, the consumer’s beliefs could be swayed by about the information provided, specifically the percentages of the U.S. population employed full-time in either law enforcement/criminal justice, medicine, or emergency services.

Hypothesis

The proportion of participants judging the percentage of the U.S. population employed in either law enforcement/criminal justice, medicine, or emergency services will differ depending on the amount of TV watched.

Variables and method

A total of 400 volunteer participants from a random sample of U.S. adults. Study participants agree to connect a monitoring device the their household television that enabled the study’s researchers to record the precise number of house per week that each participant spent watching TV. Each device was configured to count only time watched by the participants. Time watched by other members of the household were not counted unless the participant was watching as well.

After collecting data for six months, participants completed a questionnaire. Variables from the resulting data set include those below.

The dependent variable in the analysis was the measure of percentages each participant believed the U.S. population was employed full-time as either law enforcement/criminal justice, medicine, or emergency services. The independent variable in the analysis was the continuous measure of the hours per week the participants watched TV.

A bivariate regression test was conducted to examine whether the association between time of media consumption and employment-percentage belief was statistically significant.

Results and discussion

The graphs and tables below summarize the association between the dependent and the independent variables. The regression analysis results are shown as well.


## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## `geom_smooth()` using formula = 'y ~ x'

Leverage estimates for 10 largest outliers
Row # Leverage
164 0.0305
360 0.0207
359 0.0194
371 0.0174
72 0.0162
201 0.0159
265 0.0159
392 0.0148
44 0.0144
97 0.0144
Regression Analysis Results
Coefficient Estimates
Term Estimate Std. Error t p-value
(Intercept) 23.2076 2.2026 10.5363 0.0000
IV 0.8440 0.0630 13.4056 0.0000
Model Fit Statistics
Overall Regression Performance
R-squared Adj. R-squared F-statistic df (model) df (residual) Residual Std. Error
0.3111 0.3093 179.7107 1.0000 398.0000 9.7373

The results supported the hypothesis. While the strength of the results does not show strong association explaining only about 31% in variation (R-squared = 0.3111), there still is a positive correlation between the two variables.

Code

##################################################
# 1. Install and load required packages
##################################################
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")

library(tidyverse)
library(gt)
library(gtExtras)


##################################################
# 2. Read in the dataset
##################################################
# Replace "YOURFILENAME.csv" with the actual filename
mydata <- read.csv("Cultivation.csv")


# ################################################
# # (Optional) 2b. Remove specific cases by row number
# ################################################
# # Example: remove rows 10 and 25
# rows_to_remove <- c(10, 25) # Edit and uncomment this line
# mydata <- mydata[-rows_to_remove, ] # Uncomment this line


##################################################
# 3. Define dependent variable (DV) and independent variable (IV)
##################################################
# Replace YOURDVNAME and YOURIVNAME with actual column names
mydata$DV <- mydata$pct
mydata$IV <- mydata$video


##################################################
# 4. Explore distributions of DV and IV
##################################################
# Make a histogram for DV
DVGraph <- ggplot(mydata, aes(x = DV)) + 
  geom_histogram(color = "black", fill = "#1f78b4")

# Make a histogram for IV
IVGraph <- ggplot(mydata, aes(x = IV)) + 
  geom_histogram(color = "black", fill = "#1f78b4")


##################################################
# 5. Fit and summarize initial regression model
##################################################
# Suppress scientific notation
options(scipen = 999)

# Fit model
myreg <- lm(DV ~ IV, data = mydata)

# Model summary
summary(myreg)


##################################################
# 6. Visualize regression and check for bivariate outliers
##################################################
# Create scatterplot with regression line as a ggplot object
RegressionPlot <- ggplot(mydata, aes(x = IV, y = DV)) +
  geom_point(color = "#1f78b4") +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  labs(
    title = "Scatterplot of DV vs IV with Regression Line",
    x = "Independent Variable (IV)",
    y = "Dependent Variable (DV)"
  ) +
  theme_minimal()


##################################################
# 7. Check for potential outliers (high leverage points)
##################################################
# Calculate leverage values
hat_vals <- hatvalues(myreg)

# Rule of thumb: leverage > 2 * (number of predictors + 1) / n may be influential
threshold <- 2 * (length(coef(myreg)) / nrow(mydata))

# Create table showing 10 largest leverage values
outliers <- data.frame(
  Obs = 1:nrow(mydata),
  Leverage = hatvalues(myreg)
) %>%
  arrange(desc(Leverage)) %>%
  slice_head(n = 10)

# Format as a gt table
outliers_table <- outliers %>%
  gt() %>%
  tab_header(
    title = "Leverage estimates for 10 largest outliers"
  ) %>%
  cols_label(
    Obs = "Row #",
    Leverage = "Leverage"
  ) %>%
  fmt_number(
    columns = Leverage,
    decimals = 4
  )


##################################################
# 8. Create nicely formatted regression results tables
##################################################
# --- Coefficient-level results ---
reg_results <- as.data.frame(coef(summary(myreg))) %>%
  tibble::rownames_to_column("Term") %>%
  rename(
    Estimate = Estimate,
    `Std. Error` = `Std. Error`,
    t = `t value`,
    `p-value` = `Pr(>|t|)`
  )

reg_table <- reg_results %>%
  gt() %>%
  tab_header(
    title = "Regression Analysis Results",
    subtitle = "Coefficient Estimates"
  ) %>%
  fmt_number(
    columns = c(Estimate, `Std. Error`, t, `p-value`),
    decimals = 4
  )


# --- Model fit statistics ---
reg_summary <- summary(myreg)

fit_stats <- tibble::tibble(
  `R-squared` = reg_summary$r.squared,
  `Adj. R-squared` = reg_summary$adj.r.squared,
  `F-statistic` = reg_summary$fstatistic[1],
  `df (model)` = reg_summary$fstatistic[2],
  `df (residual)` = reg_summary$fstatistic[3],
  `Residual Std. Error` = reg_summary$sigma
)

fit_table <- fit_stats %>%
  gt() %>%
  tab_header(
    title = "Model Fit Statistics",
    subtitle = "Overall Regression Performance"
  ) %>%
  fmt_number(
    columns = everything(),
    decimals = 4
  )


##################################################
# 9. Final print of key graphics and tables
##################################################
DVGraph
IVGraph
RegressionPlot
outliers_table
reg_table
fit_table