This file contains a set of tasks that you need to complete in R for the lab assignment. The tasks may require you to add a code chuck, type code into a chunk, and/or execute code. Some tasks may also ask you to answer specific questions. Don’t forget that you need to acknowledge if you used any resources beyond class materials or got help to complete the assignment.
Additional information and examples relevant to this assignment can be found in the file “PlayingWithDataTutorial.html”.
The data set you will use is different than the one used in the instructions. Pay attention to the differences in the Excel files name, any variable names, and/or object names. You will need to adjust your code accordingly.
Once you have completed the assignment, you will need to knit this R Markdown file to produce an html file. You will then need to upload the .html file and this .Rmd file to AsULearn. Additionally, for this assignment you will upload the Excel file you created.
The first thing you need to do in this file is to add your name and date in the lines underneath this document’s title (see the code in lines 10 and 11).
Insert a chunk of code in this section to identify and set your
working directory and load packages. We will use the same three packages
we did in the last lab: openxlsx
, dplyr
and
tidyverse
.
getwd()
## [1] "/Users/rlmcollins/Desktop"
setwd("/Users/rlmcollins/Desktop")
library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library("openxlsx")
library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.5
## ✔ ggplot2 3.5.2 ✔ stringr 1.5.1
## ✔ lubridate 1.9.4 ✔ tibble 3.3.0
## ✔ purrr 1.1.0 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Insert a chunk of code in this section to load your data. The Excel file for this assignment has two sheets: grades and attendance. Sheet 1 contains the grades data and Sheet 2 contains the attendance data. You will want to load each sheet into R as separate data objects. The name of the Excel file is different than what is in the instructions. Accordingly, you will need to adjust the code to read in the Excel file that was downloaded as part of the zip file.
GradeBook <- read.xlsx("GradeBook.xlsx" , sheet = 1)
head(GradeBook, 10)
## X1 Midterm.1 Midterm.2 Assignment.1 Assignment.2 Assignment.3 Final
## 1 Noah 15.00000 12.00000 5.000000 8.000000 5.661442 30.00000
## 2 Jack 11.00478 15.00000 6.771172 10.000000 8.000000 26.00000
## 3 Emily 20.00000 20.00000 8.000000 8.000000 8.154995 20.00000
## 4 Colin 20.00000 17.00000 8.000000 5.000000 8.673615 25.00000
## 5 Hannah 10.00000 17.00000 6.802136 9.604730 10.000000 20.00000
## 6 Aubrie 20.00000 14.00000 5.000000 6.000000 6.000000 17.78453
## 7 Olivia 14.00000 17.72971 10.000000 7.000000 6.000000 26.00000
## 8 Duncan 9.62783 16.00000 7.000000 8.065708 8.000000 18.95910
## 9 Katie 19.00000 12.00000 9.000000 8.000000 8.967217 20.00000
## 10 Jackson 17.00000 15.00000 8.000000 6.000000 2.549882 25.00000
Attendance <- read.xlsx("GradeBook.xlsx" , sheet = 2)
head(Attendance, 10)
## Name 1 2 3 4 5
## 1 Noah 1 1 1 1 1
## 2 Jack 0 1 1 1 1
## 3 Emily 1 1 0 0 1
## 4 Colin 1 0 1 1 1
## 5 Hannah 1 1 0 1 1
## 6 Aubrie 1 1 1 1 1
## 7 Olivia 1 1 1 1 1
## 8 Duncan 0 1 0 0 1
## 9 Katie 1 1 1 1 1
## 10 Jackson 1 0 1 1 1
Insert a chunk of code in this section and display the first 15 observations of each data set.
head("GradeBook, 10")
## [1] "GradeBook, 10"
tail("Attendance, 5")
## [1] "Attendance, 5"
You will need to insert chunks of code and rename variables in your data sets in this section. I recommend trying to do only one thing per chunk of code.
In the attendance data set, you will need to rename the variables
that are currently numbers into text. In the instructions, I called each
variable Class
and then the number of that class, for
example Class1
. Instead of using the same variable name as
I did, you should call each variable a Meeting
.
Attendance %>%
rename(Meeting1 = "1",
Meeting2 = "2",
Meeting3 = "3",
Meeting4 = "4",
Meeting5 = "5") -> Attendance
head("Attendance, 10")
## [1] "Attendance, 10"
In the grade book data set, rename the variables so that they do not
have a .
in their names.
GradeBook %>%
rename(Midterm1 = "Midterm.1",
Midterm2 = "Midterm.2",
Assignment1 = "Assignment.1",
Assignment2 = "Assignment.2",
Assignment3 = "Assignment.3",
Final = "Final") -> GradeBook
head("GradeBook, 10")
## [1] "GradeBook, 10"
After renaming the variables, look at the first 15 observations for each data set.
head("Attendance, 10")
## [1] "Attendance, 10"
tail("GradeBook, 5")
## [1] "GradeBook, 5"
In this section, insert chunks and create the following variables in your attendance data set.
Attendance %>%
mutate(Present = (Meeting1 + Meeting2 + Meeting3 + Meeting4 + Meeting5)) -> Attendance
head("Attendance, 10")
## [1] "Attendance, 10"
Attendance %>%
mutate(Absent = (Meeting1 + Meeting2 + Meeting3 + Meeting4 + Meeting5)) -> Attendance
head("Attendance, 10")
## [1] "Attendance, 10"
Attendance %>%
mutate(unexcusedabsences = (Meeting1 + Meeting2 + Meeting3 + Meeting4 + Meeting5)) -> Attendance
head("Attendance, 10")
## [1] "Attendance, 10"
After you have completed these calculations, take a look at the first 15 observations in your data set.
In this section, insert chunks and create the following variables in your grade book data set.
GradeBook %>%
mutate(PerA1 = (Assignment1/10)*100) -> GradeBook
print(GradeBook$Assignment1)
## [1] 5.000000 6.771172 8.000000 8.000000 6.802136 5.000000 10.000000
## [8] 7.000000 9.000000 8.000000 8.000000 10.000000 8.000000 6.000000
## [15] 6.000000 9.000000
GradeBook %>%
mutate(PerA2 = (Assignment2/10)*100) -> GradeBook
print(GradeBook$Assignment2)
## [1] 8.000000 10.000000 8.000000 5.000000 9.604730 6.000000 7.000000
## [8] 8.065708 8.000000 6.000000 10.000000 9.000000 10.000000 7.000000
## [15] 8.000000 7.000000
GradeBook %>%
mutate(PerA3 = (Assignment3/10)*100) -> GradeBook
print(GradeBook$Assignment3)
## [1] 5.661442 8.000000 8.154995 8.673615 10.000000 6.000000 6.000000
## [8] 8.000000 8.967217 2.549882 6.701154 10.000000 10.000000 8.000000
## [15] 6.000000 7.000000
GradeBook %>%
mutate(PerMT1 = (Midterm1/20)*100) -> GradeBook
print(GradeBook$Midterm1)
## [1] 15.00000 11.00478 20.00000 20.00000 10.00000 20.00000 14.00000 9.62783
## [9] 19.00000 17.00000 11.00000 10.00000 7.00000 14.00000 6.00000 11.00000
GradeBook %>%
mutate(PerMT2 = (Midterm2/20)*100) -> GradeBook
print(GradeBook$Midterm2)
## [1] 12.00000 15.00000 20.00000 17.00000 17.00000 14.00000 17.72971 16.00000
## [9] 12.00000 15.00000 9.93236 13.00000 11.00000 12.00000 10.00000 12.00000
GradeBook %>%
mutate(PerF = (Final/30)*100) -> GradeBook
print(GradeBook$Final)
## [1] 30.00000 26.00000 20.00000 25.00000 20.00000 17.78453 26.00000 18.95910
## [9] 20.00000 25.00000 26.00000 26.00000 18.00000 29.00000 19.00000 28.00000
print(GradeBook$PerF)
## [1] 100.00000 86.66667 66.66667 83.33333 66.66667 59.28176 86.66667
## [8] 63.19701 66.66667 83.33333 86.66667 86.66667 60.00000 96.66667
## [15] 63.33333 93.33333
There are multiple ways one can calculate the overall grade for the class. You are going to calculate the final grade in two different ways.
GradeBook %>%
mutate(OverallGrade = ((PerA1+PerA2+PerA3+PerMT1+PerMT2+PerF)/600*100)) -> GradeBook
print(GradeBook$OverallGrade)
## [1] 70.26907 77.40038 84.70277 80.84491 77.62255 66.54696 79.21920 70.33221
## [9] 80.22314 68.13869 73.05667 81.94444 71.66667 72.77778 57.22222 73.05556
GradeBook %>%
mutate(OverallGrade = ((Assignment1+Assignment2+Assignment3+Midterm1+Midterm2+Final)/600*100)) -> GradeBook
print(GradeBook$OverallGrade)
## [1] 12.610240 12.795993 14.025833 13.945602 12.234478 11.464088 13.454952
## [8] 11.275440 12.827870 12.258314 11.938919 13.000000 10.666667 12.666667
## [15] 9.166667 12.333333
After you have completed these calucations, take a look at the first 15 observations in your data set.
In this section, insert chunks and calculate the mean, minimum, and maximum for 3 different variables (midterm 2, assignment 3, and the final exam) in the grade book data set. Use the variables that report the scores as a percentage that you created.
mean_PerMT1 <- mean(GradeBook$PerMT1)
print(mean_PerMT1)
## [1] 67.07269
min_PerMT1 <- min(GradeBook$PerMT1)
print(min_PerMT1)
## [1] 30
max_PerMT1 <- max(GradeBook$PerMT1)
print(max_PerMT1)
## [1] 100
In this section, insert chunks and produce the following objects that will contain values for each variable in the data set.
attendsum <- sapply(Attendance[ , c('Meeting1', 'Meeting2','Meeting3', 'Meeting4', 'Meeting5')], sum)
attendmean <- sapply(Attendance[ , c('Meeting1', 'Meeting2','Meeting3', 'Meeting4', 'Meeting5')], mean)
AttedanceSummary <- rbind(attendsum,attendmean)
print(AttedanceSummary)
## Meeting1 Meeting2 Meeting3 Meeting4 Meeting5
## attendsum 13.0000 13.0000 12.00 14.000 15.0000
## attendmean 0.8125 0.8125 0.75 0.875 0.9375
GradeBookmean <- sapply(GradeBook[ , c('Midterm1', 'Midterm2','Assignment1', 'Assignment2', 'Assignment3' , 'Final')], mean)
GradeBookmin <- sapply(GradeBook[ , c('Midterm1', 'Midterm2','Assignment1', 'Assignment2', 'Assignment3' , 'Final')], min)
GradeBookmax <- sapply(GradeBook[ , c('Midterm1', 'Midterm2','Assignment1', 'Assignment2', 'Assignment3' , 'Final')], max)
In this section, insert chunks of code that will combine objects together.
attendsum <- sapply(Attendance[ , c('Meeting1', 'Meeting2','Meeting3', 'Meeting4', 'Meeting5')], sum)
attendmean <- sapply(Attendance[ , c('Meeting1', 'Meeting2','Meeting3', 'Meeting4', 'Meeting5')], mean)
AttedanceSummary <- rbind(attendsum,attendmean)
print(AttedanceSummary)
## Meeting1 Meeting2 Meeting3 Meeting4 Meeting5
## attendsum 13.0000 13.0000 12.00 14.000 15.0000
## attendmean 0.8125 0.8125 0.75 0.875 0.9375
GradeBook <- rbind(GradeBookmin, GradeBookmean, GradeBookmax)
print(GradeBook)
## Midterm1 Midterm2 Assignment1 Assignment2 Assignment3 Final
## GradeBookmin 6.00000 9.93236 5.000000 5.000000 2.549882 17.78453
## GradeBookmean 13.41454 13.97888 7.535832 7.916902 7.481769 23.42148
## GradeBookmax 20.00000 20.00000 10.000000 10.000000 10.000000 30.00000
In this section, insert a chunk of code to export the grade book data, the attendance data, the summary grade book, and the summary attendance as one Excel file. Make sure to name your data file something different than the Excel file that had the original data that you loaded into R for this assignment.
write.xlsx(AttedanceSummary, file = "AttendanceSummary.xlsx")
sheets<- list("Grades" = GradeBook, "Attendance" = Attendance, AttendanceSummary = "AttedanceSummary")
write.xlsx(sheets, file = "combined.xlsx")
Enter the names of anyone one that assisted you with completing this lab. If no one helped you complete the assignment, just type out that no one helped you
Caitlyn Fiocchi
Enter the names of anyone that you assisted with completing this lab. If you did not help anyone, then just type out that you didn’t help anyone. No
Click the “Knit” button to publish your work as an html document. This document or file will appear in the folder specified by your working directory. You will need to upload both this RMarkdown file and the html file it produces to AsU Learn to get all of the lab points for this week. Additionally, you need to upload the Excel file that you exported when completing the assignment to get all of the lab points for this week.