library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
# Load the movies dataset
movies <- read_csv ("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
q1 <- movies %>%
rename( movie_title = Film , release_year = Year)
head(q1)
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
q2 <- q1 %>%
select (movie_title, release_year, Genre, Profitability)
head(q2)
## # A tibble: 6 × 4
## movie_title release_year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
q3 <- q1 %>%
select (movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
filter(release_year > 2000, `Rotten Tomatoes %` > 80)
head(q3)
## # A tibble: 6 × 5
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
q4 <- q3 %>%
mutate(Profitability_millions = Profitability / 1e6)
head(q4)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animati… 2.90 96
## 2 Waitress 2007 Romance 11.1 89
## 3 Tangled 2010 Animati… 1.37 89
## 4 Rachel Getting Married 2008 Drama 1.38 85
## 5 My Week with Marilyn 2011 Drama 0.826 83
## 6 Midnight in Paris 2011 Romence 8.74 93
## # ℹ 1 more variable: Profitability_millions <dbl>
q5 <- q4 %>%
arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(q5)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 Enchanted 2007 Comedy 4.01 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Waitress 2007 Romance 11.1 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: Profitability_millions <dbl>
final <- movies %>% #then
rename(movie_title = Film, release_year = Year) %>%
select (movie_title, release_year, Genre, Profitability , `Rotten Tomatoes %`) %>%
filter(release_year > 2000, 'Rotten Tomatoes %' > 80) %>%
mutate(profitability_millions = Profitability / 1e6) %>%
arrange(desc(`Rotten Tomatoes %`), desc(profitability_millions))
head(final)
## # A tibble: 6 × 6
## movie_title release_year Genre Profitability `Rotten Tomatoes %`
## <chr> <dbl> <chr> <dbl> <dbl>
## 1 WALL-E 2008 Animation 2.90 96
## 2 Midnight in Paris 2011 Romence 8.74 93
## 3 Enchanted 2007 Comedy 4.01 93
## 4 Knocked Up 2007 Comedy 6.64 91
## 5 Waitress 2007 Romance 11.1 89
## 6 A Serious Man 2009 Drama 4.38 89
## # ℹ 1 more variable: profitability_millions <dbl>
From the data, the best movies are not necessarily the most popular because the ones that were most profitable do not have the best Rotten Tomato score.
library(dplyr)
library(tidyr)
library(stringr)
# Use `final` if it exists; otherwise recreate a safe df from movies
if (exists("final")) {
df <- final
} else {
df <- movies %>%
rename(movie_title = Film, release_year = Year) %>%
select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
filter(release_year > 2000, `Rotten Tomatoes %` > 80)
}
# Remove exact duplicate rows (if any)
df <- df %>% distinct()
# Ensure Profitability_millions exists
if (!"Profitability_millions" %in% names(df)) {
df <- df %>% mutate(Profitability_millions = Profitability / 1e6)
}
# Split multi-genre strings into separate rows, clean + standardize genres
df_clean <- df %>%
mutate(Genre = str_trim(Genre)) %>%
separate_rows(Genre, sep = ",\\s*") %>%
filter(!is.na(Genre)) %>%
mutate(
# Normalize case
Genre = str_to_title(Genre),
# Collapse common comedy typos/variants into "Comedy"
Genre = str_replace_all(Genre, "Comdey|Comdy|Comd", "Comedy")
) %>%
# Remove Romance (case-insensitive)
filter(!str_detect(Genre, regex("romance", ignore_case = TRUE))) %>%
# Drop duplicates of the same movie-genre combo
distinct(movie_title, Genre, .keep_all = TRUE)
# Group and summarize
summary_by_genre <- df_clean %>%
group_by(Genre) %>%
summarize(
avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
avg_profitability_millions = mean(Profitability_millions, na.rm = TRUE),
n_movies = n(),
.groups = "drop"
) %>%
arrange(desc(avg_rating))
# Show first 6 rows
head(summary_by_genre)
## # A tibble: 6 × 4
## Genre avg_rating avg_profitability_millions n_movies
## <chr> <dbl> <dbl> <int>
## 1 Romence 93 0.00000874 1
## 2 Animation 80.3 0.00000322 3
## 3 Fantasy 73 0.00000178 1
## 4 Drama 51.5 0.00000841 13
## 5 Comedy 42.8 0.00000372 42
## 6 Action 11 0.00000125 1