library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

Load the movies dataset

movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Q1

one <- movies %>%
  rename(movie_title = Film, release_year = Year)
print("Results for Question 1")
## [1] "Results for Question 1"
print(head(one))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Q2

two <- one %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`)
print("Results for Question 2")
## [1] "Results for Question 2"
print(head(two))
## # A tibble: 6 × 5
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60

Q3

three <- two %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80)
print("Results for Question 3")
## [1] "Results for Question 3"
print(head(three))
## # A tibble: 6 × 5
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
four <- three %>%
mutate(Profitability_millions = Profitability * 1000000)
print("Results for Question 4")
## [1] "Results for Question 4"
print(head(four))
## # A tibble: 6 × 6
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
## # ℹ 1 more variable: Profitability_millions <dbl>
five <- four %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
print("Results for Question 5")
## [1] "Results for Question 5"
print(head(five))
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>
final <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000 & `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
print("Results for Question 6")
## [1] "Results for Question 6"
print(head(final))
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>
print("Results for Question 7")
## [1] "Results for Question 7"

based on the data it is common that the best movies based on rotten tomatoes % are not necessarily the most profitable

extra_credit_summary <- movies %>%
  # 1. RENAME columns for clarity (as in original Q1)
  rename(movie_title = Film, release_year = Year) %>%
  
  # 2. **DATA CLEANING STEP: CONSOLIDATE GENRES**
  #    Use mutate + recode to fix the spelling error 'Romence' to 'Romance'
  mutate(Genre = recode(Genre, "Romence" = "Romance")) %>%
  
  # 3. CALCULATE Profitability in Millions (as in original Q4)
  mutate(Profitability_millions = Profitability * 1000000) %>%
  
  # 4. GROUP by the corrected Genre column
  group_by(Genre) %>%
  
  # 5. SUMMARIZE average rating and profitability for each consolidated Genre
  summarize(
    average_rotten_tomatoes = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    average_profitability_millions = mean(Profitability_millions, na.rm = TRUE)
  ) %>%
  
  # 6. ARRANGE the final output
  arrange(desc(average_rotten_tomatoes))

# Print the resulting summary table (first 6 rows)
print(head(extra_credit_summary))
## # A tibble: 6 × 3
##   Genre     average_rotten_tomatoes average_profitability_millions
##   <chr>                       <dbl>                          <dbl>
## 1 comedy                       87                         8096000 
## 2 Animation                    74.2                       3759414.
## 3 Fantasy                      73                         1783944.
## 4 romance                      54                          652603.
## 5 Drama                        51.5                       8407218.
## 6 Romance                      45.7                       4324784.
print("Results for EXTRA CREDIT (Summary Table):")
## [1] "Results for EXTRA CREDIT (Summary Table):"
print(extra_credit_summary)
## # A tibble: 9 × 3
##   Genre     average_rotten_tomatoes average_profitability_millions
##   <chr>                       <dbl>                          <dbl>
## 1 comedy                       87                         8096000 
## 2 Animation                    74.2                       3759414.
## 3 Fantasy                      73                         1783944.
## 4 romance                      54                          652603.
## 5 Drama                        51.5                       8407218.
## 6 Romance                      45.7                       4324784.
## 7 Comedy                       42.7                       3776946.
## 8 Comdy                        13                         2649068.
## 9 Action                       11                         1245333.