1. rename(): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”

question1 <- movies %>%
    rename(movie_title = Film , release_year = Year)

head(question1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

question2 <- question1 %>%
  select(movie_title, release_year, Genre, Profitability, 'Rotten Tomatoes %')

head(question2)
## # A tibble: 6 × 5
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

question3 <- question2 %>%
  filter(release_year > 2000, 'Rotten Tomatoes %' > 80)

head(question3)
## # A tibble: 6 × 5
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts Profitability to millions of dollars.

question4 <- question3 %>%
  mutate(Profitability_millions = Profitability / 1000000)

head(question4)
## # A tibble: 6 × 6
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60
## # ℹ 1 more variable: Profitability_millions <dbl>

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, then by Profitability_millions in descending order.

question5 <- question4 %>%
  arrange(desc('Rotten Tomatoes %'), desc(Profitability_millions))

head(question5)
## # A tibble: 6 × 6
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Fireproof                         2008 Drama         66.9                   40
## 2 High School Musical 3: S…         2008 Come…         22.9                   65
## 3 The Twilight Saga: New M…         2009 Drama         14.2                   27
## 4 Waitress                          2007 Roma…         11.1                   89
## 5 Twilight                          2008 Roma…         10.2                   49
## 6 Mamma Mia!                        2008 Come…          9.23                  53
## # ℹ 1 more variable: Profitability_millions <dbl>

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

final <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability / 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head(final)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret question 6 (1 point)

From the resulting data, are the best movies the most popular?

No, the best movies are not always the most popular.

EXTRA CREDIT (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre.

summary_by_genre <- movies %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  mutate(Genre = recode(Genre, 
                        "Comdy" = "Comedy", 
                        "comedy" = "Comedy",
                        "Romence" = "Romance",
                        "romance" = "Romance")) %>%
 
   group_by(Genre) %>%
  summarize(
    avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    avg_profitability_millions = mean(Profitability_millions, na.rm = TRUE)
  )
head(summary_by_genre)
## # A tibble: 6 × 3
##   Genre     avg_rating avg_profitability_millions
##   <chr>          <dbl>                      <dbl>
## 1 Action          11                     1245333.
## 2 Animation       74.2                   3759414.
## 3 Comedy          43.0                   3851160.
## 4 Drama           51.5                   8407218.
## 5 Fantasy         73                     1783944.
## 6 Romance         46.3                   4079972.