1. rename()

Rename the “Film” column to “movie_title” and “Year” to “release_year”

question_1 <- movies %>%
  rename(movie_title = Film , release_year = Year)
head(question_1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select()

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability, and Rotten Tomatoes %

question_2 <- question_1 %>%
  select(movie_title , release_year , Genre , Profitability)
head(question_2)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3. filter()

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 8

question_3 <- question_1 %>%
  select(movie_title , release_year , Genre , Profitability , `Rotten Tomatoes %`) %>%
  filter(release_year > 2000 , `Rotten Tomatoes %` > 80)
head(question_3)
## # A tibble: 6 × 5
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93

4. mutate()

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

question_4 <- question_3 %>%
  mutate(Profitability_millions = Profitability * 1000000)
head(question_4)
## # A tibble: 6 × 6
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
## # ℹ 1 more variable: Profitability_millions <dbl>

5. arrange()

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order.

question_5 <- question_4 %>%
  arrange(desc(`Rotten Tomatoes %`) , desc(Profitability))
head(question_5)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

6. Combining Functions

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

Everything <- movies %>%
  rename(release_year = Year , movie_title = Film) %>%
  select(movie_title , release_year , Genre , Profitability , `Rotten Tomatoes %`) %>%
  filter(release_year > 2000 , `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`) , desc(Profitability))
head(Everything)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret Question 6

From the resulting data, are the best movies the most popular?

# No, there is no clear pattern between profitability and rotten tomato score.

Extra Credit

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre.

Extra_Credit <- movies %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  mutate(Genre = recode(Genre,
                        "Comdy" = "Comedy",
                        "comedy" = "Comedy",
                        "Romence" = "Romance",
                        "romance" = "Romance")) %>%
  group_by(Genre) %>%
  summarise(
    Avg_Profitability = mean(Profitability_millions),
    Avg_Rating = mean(`Rotten Tomatoes %`)
  )
head(Extra_Credit)
## # A tibble: 6 × 3
##   Genre     Avg_Profitability Avg_Rating
##   <chr>                 <dbl>      <dbl>
## 1 Action             1245333.       11  
## 2 Animation          3759414.       74.2
## 3 Comedy             3851160.       43.0
## 4 Drama              8407218.       51.5
## 5 Fantasy            1783944.       73  
## 6 Romance            4079972.       46.3