Gina Updated Models

knitr::opts_knit$set(root.dir = "C:/Work Files/Dissertations/Gina Drury")
#setwd("C:/Work Files/Dissertations/Gina Drury")
library(mice)

Attaching package: 'mice'
The following object is masked from 'package:stats':

    filter
The following objects are masked from 'package:base':

    cbind, rbind
library(lavaan)
This is lavaan 0.6-19
lavaan is FREE software! Please report any bugs.
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks mice::filter(), stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(knitr) 
library(kableExtra)

Attaching package: 'kableExtra'

The following object is masked from 'package:dplyr':

    group_rows
cleaned_data_final2 <- read.csv("cleaned_data_final2.csv")

cleaned_data_final2.1 <- cleaned_data_final2 %>% mutate(across(where(is.factor), ordered))

cleaned_data_final2.1$log_income <- log(cleaned_data_final2.1$hseincom)/10
cleaned_data_final2.1$log_FIQ <- log(cleaned_data_final2.1$MomOnlyFSIQ)/10


cleaned_data_final2.1_oboe_only <- cleaned_data_final2.1[cleaned_data_final2.1$oboe_group == "exposed", ]

cleaned_data_final2.1_no_oboe <- cleaned_data_final2.1[cleaned_data_final2.1$oboe_group == "control", ]


str(cleaned_data_final2.1$oboe_group)
 chr [1:291] "control" "control" "control" "control" "control" "control" ...
table(cleaned_data_final2.1_oboe_only$oboe_group)

exposed 
    194 
names(cleaned_data_final2.1)
 [1] "X.1"                "X"                  "oboe_group"        
 [4] "pcedlevel"          "hseincom"           "bzip"              
 [7] "maristat"           "zip"                "diabpprg"          
[10] "gestdiab"           "hyp"                "pree"              
[13] "hepc"               "hiv"                "hepb"              
[16] "syph"               "gon"                "chlmyd"            
[19] "acescore"           "Dep_Score"          "Anx_Score"         
[22] "Anger_Score"        "Supp_Score"         "Meaning_Score"     
[25] "gawks"              "gaday"              "imhbirthwt"        
[28] "imh_birthhcr"       "imh_birthlt"        "apgar1m"           
[31] "apgar5m"            "sex"                "n2attention"       
[34] "n2regulation"       "n2arousal"          "n2tone"            
[37] "n2tonehi"           "n2tonelo"           "n2tonemix"         
[40] "n2nonoptref"        "n2qmove"            "n2stress"          
[43] "ethnc"              "MomOnlyFSIQ"        "final_nnns_class"  
[46] "MatAge"             "prenatal_collapsed" "collapsed_mentheal"
[49] "mmins_combined"     "mrace_combined"     "othersub_y_n"      
[52] "any_subuse_y_n"     "log_income"         "log_FIQ"           
cat_vars <- names(cleaned_data_final2.1)[sapply(cleaned_data_final2.1, is.factor)]

head(cat_vars)
character(0)
library(forcats)

# Collapse rare levels in all categorical variables
cleaned_data_final2.1[cat_vars] <- lapply(cleaned_data_final2.1[cat_vars], function(x) {
  fct_lump_min(x, min = 5)  # Change threshold based on your data
})
M_model <- '

Mat_Health =~ diabpprg + gestdiab + hyp + prenatal_collapsed + hiv + syph + chlmyd

MatMen_health =~ collapsed_mentheal + acescore + Dep_Score + Anx_Score + Anger_Score + Supp_Score + Meaning_Score

Infant =~ imhbirthwt + imh_birthlt + imh_birthhcr + gawks + sex

SocioDem =~ MatAge + mmins_combined + mrace_combined + pcedlevel + MomOnlyFSIQ + any_subuse_y_n + hseincom

'

M_model_fit <- sem(M_model, estimator= "WLSMV", data=cleaned_data_final2.1, std.lv=TRUE,missing = "pairwise", mimic = "Mplus")
Warning: lavaan->lav_options_est_dwls():  
   estimator "DWLS" is not recommended for continuous data. Did you forget to 
   set the ordered= argument?
Warning: lavaan->lav_data_full():  
   some observed variances are (at least) a factor 1000 times larger than 
   others; use varTable(fit) to investigate
Warning: lavaan->lav_samplestats_from_data():  
   number of observations (291) too small to compute Gamma
Warning: lavaan->lav_model_vcov():  
   The variance-covariance matrix of the estimated parameters (vcov) does not 
   appear to be positive definite! The smallest eigenvalue (= -4.108105e-06) 
   is smaller than zero. This may be a symptom that the model is not 
   identified.
summary(M_model_fit, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-19 ended normally after 105 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        84

  Number of observations                           291
  Number of missing patterns                        27

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               460.447     418.076
  Degrees of freedom                               293         293
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.816
  Shift parameter                                          164.463
    simple second-order correction (WLSMV)                        

Model Test Baseline Model:

  Test statistic                              2046.658    1033.872
  Degrees of freedom                               325         325
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.429

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.903       0.824
  Tucker-Lewis Index (TLI)                       0.892       0.804
                                                                  
  Robust Comparative Fit Index (CFI)                         0.903
  Robust Tucker-Lewis Index (TLI)                            0.892

Root Mean Square Error of Approximation:

  RMSEA                                          0.044       0.038
  90 Percent confidence interval - lower         0.036       0.030
  90 Percent confidence interval - upper         0.052       0.046
  P-value H_0: RMSEA <= 0.050                    0.884       0.992
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.052
  90 Percent confidence interval - lower                     0.040
  90 Percent confidence interval - upper                     0.063
  P-value H_0: Robust RMSEA <= 0.050                         0.393
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.063       0.063

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  Mat_Health =~                                                           
    diabpprg           0.003    0.003    0.756    0.450     0.003    0.025
    gestdiab           0.004    0.014    0.252    0.801     0.004    0.015
    hyp                0.095    0.038    2.504    0.012     0.095    0.226
    prenatl_cllpsd     0.078    0.034    2.268    0.023     0.078    0.209
    hiv               -0.027    0.021   -1.308    0.191    -0.027   -0.129
    syph               0.024    0.020    1.184    0.236     0.024    0.101
    chlmyd             0.064    0.038    1.695    0.090     0.064    0.161
  MatMen_health =~                                                        
    collapsd_mnthl     0.305    0.051    5.943    0.000     0.305    0.325
    acescore          -0.938    0.152   -6.160    0.000    -0.938   -0.339
    Dep_Score         -8.107    0.428  -18.925    0.000    -8.107   -0.905
    Anx_Score         -8.627    0.442  -19.517    0.000    -8.627   -0.808
    Anger_Score       -6.878    0.567  -12.124    0.000    -6.878   -0.705
    Supp_Score         5.355    0.476   11.255    0.000     5.355    0.648
    Meaning_Score      5.347    0.526   10.161    0.000     5.347    0.586
  Infant =~                                                               
    imhbirthwt         0.430    0.026   16.847    0.000     0.430    0.949
    imh_birthlt        1.719    0.144   11.937    0.000     1.719    0.727
    imh_birthhcr       0.987    0.082   12.066    0.000     0.987    0.693
    gawks              0.362    0.065    5.557    0.000     0.362    0.361
    sex                0.087    0.031    2.811    0.005     0.087    0.175
  SocioDem =~                                                             
    MatAge             1.005    0.378    2.659    0.008     1.005    0.197
    mmins_combined    -0.160    0.041   -3.938    0.000    -0.160   -0.326
    mrace_combined     0.288    0.079    3.650    0.000     0.288    0.247
    pcedlevel          0.879    0.114    7.679    0.000     0.879    0.568
    MomOnlyFSIQ        8.008    1.109    7.219    0.000     8.008    0.573
    any_subuse_y_n    -0.179    0.036   -4.928    0.000    -0.179   -0.394
    hseincom          -6.287    5.131   -1.225    0.220    -6.287   -0.054

Covariances:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  Mat_Health ~~                                                           
    MatMen_health     -0.725    0.252   -2.875    0.004    -0.725   -0.725
    Infant             0.016    0.141    0.112    0.911     0.016    0.016
    SocioDem           0.130    0.171    0.761    0.447     0.130    0.130
  MatMen_health ~~                                                        
    Infant             0.150    0.064    2.344    0.019     0.150    0.150
    SocioDem           0.221    0.068    3.244    0.001     0.221    0.221
  Infant ~~                                                               
    SocioDem           0.407    0.072    5.640    0.000     0.407    0.407

Intercepts:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .diabpprg           1.011    0.006  170.092    0.000     1.011    9.884
   .gestdiab           1.057    0.013   78.931    0.000     1.057    4.546
   .hyp                1.230    0.024   50.396    0.000     1.230    2.918
   .prenatl_cllpsd     1.165    0.021   54.550    0.000     1.165    3.131
   .hiv                1.024    0.012   82.905    0.000     1.024    4.868
   .syph               1.034    0.014   75.810    0.000     1.034    4.452
   .chlmyd             1.100    0.023   46.963    0.000     1.100    2.758
   .collapsd_mnthl     2.014    0.055   36.503    0.000     2.014    2.144
   .acescore           2.758    0.160   17.267    0.000     2.758    0.996
   .Dep_Score         47.667    0.491   97.043    0.000    47.667    5.323
   .Anx_Score         52.164    0.586   88.958    0.000    52.164    4.889
   .Anger_Score       51.645    0.536   96.264    0.000    51.645    5.290
   .Supp_Score        56.181    0.455  123.360    0.000    56.181    6.793
   .Meaning_Score     59.531    0.501  118.714    0.000    59.531    6.524
   .imhbirthwt         3.261    0.027  122.529    0.000     3.261    7.195
   .imh_birthlt       50.265    0.138  363.413    0.000    50.265   21.267
   .imh_birthhcr      34.200    0.083  410.346    0.000    34.200   24.013
   .gawks             38.729    0.059  657.764    0.000    38.729   38.625
   .sex                1.564    0.029   53.597    0.000     1.564    3.147
   .MatAge            29.753    0.299   99.470    0.000    29.753    5.841
   .mmins_combined     3.835    0.029  132.851    0.000     3.835    7.801
   .mrace_combined     3.423    0.069   49.815    0.000     3.423    2.925
   .pcedlevel          4.054    0.089   45.476    0.000     4.054    2.619
   .MomOnlyFSIQ       94.385    0.778  121.311    0.000    94.385    6.758
   .any_subuse_y_n     1.711    0.027   64.203    0.000     1.711    3.770
   .hseincom          20.643    6.465    3.193    0.001    20.643    0.177

Variances:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .diabpprg           0.010    0.006    1.798    0.072     0.010    0.999
   .gestdiab           0.054    0.012    4.558    0.000     0.054    1.000
   .hyp                0.168    0.014   12.100    0.000     0.168    0.949
   .prenatl_cllpsd     0.133    0.014    9.395    0.000     0.133    0.956
   .hiv                0.044    0.023    1.934    0.053     0.044    0.983
   .syph               0.053    0.024    2.256    0.024     0.053    0.990
   .chlmyd             0.155    0.038    4.033    0.000     0.155    0.974
   .collapsd_mnthl     0.790    0.035   22.883    0.000     0.790    0.895
   .acescore           6.782    0.546   12.433    0.000     6.782    0.885
   .Dep_Score         14.478    2.970    4.874    0.000    14.478    0.181
   .Anx_Score         39.430    4.573    8.623    0.000    39.430    0.346
   .Anger_Score       47.989    6.237    7.694    0.000    47.989    0.504
   .Supp_Score        39.724    4.298    9.242    0.000    39.724    0.581
   .Meaning_Score     54.675    5.472    9.993    0.000    54.675    0.657
   .imhbirthwt         0.020    0.013    1.550    0.121     0.020    0.100
   .imh_birthlt        2.631    0.416    6.324    0.000     2.631    0.471
   .imh_birthhcr       1.055    0.127    8.320    0.000     1.055    0.520
   .gawks              0.875    0.075   11.677    0.000     0.875    0.870
   .sex                0.239    0.006   38.184    0.000     0.239    0.969
   .MatAge            24.935    1.957   12.741    0.000    24.935    0.961
   .mmins_combined     0.216    0.059    3.635    0.000     0.216    0.894
   .mrace_combined     1.286    0.120   10.754    0.000     1.286    0.939
   .pcedlevel          1.622    0.187    8.673    0.000     1.622    0.677
   .MomOnlyFSIQ      130.921   15.759    8.307    0.000   130.921    0.671
   .any_subuse_y_n     0.174    0.016   11.159    0.000     0.174    0.845
   .hseincom       13636.875 4747.165    2.873    0.004 13636.875    0.997
    Mat_Health         1.000                                1.000    1.000
    MatMen_health      1.000                                1.000    1.000
    Infant             1.000                                1.000    1.000
    SocioDem           1.000                                1.000    1.000
parameterEstimates(M_model_fit, standardized=TRUE) %>%
  filter(op == "=~") %>%
  select('LV1'=lhs, 'LV2'=rhs, B=est, SE=se, Z=z, 'p-value'=pvalue, Beta=std.all,CI_Lower=ci.lower, CI_Upper=ci.upper) %>%
  knitr::kable(digits = 3, format="html", booktabs=TRUE, caption="Factor Loadings for Measurement Model Exposure Group")%>%
  kable_classic(full_width = F, html_font = "Cambria")
Factor Loadings for Measurement Model Exposure Group
LV1 LV2 B SE Z p-value Beta CI_Lower CI_Upper
Mat_Health diabpprg 0.003 0.003 0.756 0.450 0.025 -0.004 0.009
Mat_Health gestdiab 0.004 0.014 0.252 0.801 0.015 -0.024 0.031
Mat_Health hyp 0.095 0.038 2.504 0.012 0.226 0.021 0.170
Mat_Health prenatal_collapsed 0.078 0.034 2.268 0.023 0.209 0.011 0.145
Mat_Health hiv -0.027 0.021 -1.308 0.191 -0.129 -0.068 0.014
Mat_Health syph 0.024 0.020 1.184 0.236 0.101 -0.015 0.063
Mat_Health chlmyd 0.064 0.038 1.695 0.090 0.161 -0.010 0.139
MatMen_health collapsed_mentheal 0.305 0.051 5.943 0.000 0.325 0.204 0.405
MatMen_health acescore -0.938 0.152 -6.160 0.000 -0.339 -1.237 -0.640
MatMen_health Dep_Score -8.107 0.428 -18.925 0.000 -0.905 -8.947 -7.267
MatMen_health Anx_Score -8.627 0.442 -19.517 0.000 -0.808 -9.493 -7.760
MatMen_health Anger_Score -6.878 0.567 -12.124 0.000 -0.705 -7.990 -5.766
MatMen_health Supp_Score 5.355 0.476 11.255 0.000 0.648 4.423 6.288
MatMen_health Meaning_Score 5.347 0.526 10.161 0.000 0.586 4.315 6.378
Infant imhbirthwt 0.430 0.026 16.847 0.000 0.949 0.380 0.480
Infant imh_birthlt 1.719 0.144 11.937 0.000 0.727 1.437 2.001
Infant imh_birthhcr 0.987 0.082 12.066 0.000 0.693 0.827 1.147
Infant gawks 0.362 0.065 5.557 0.000 0.361 0.234 0.489
Infant sex 0.087 0.031 2.811 0.005 0.175 0.026 0.147
SocioDem MatAge 1.005 0.378 2.659 0.008 0.197 0.264 1.746
SocioDem mmins_combined -0.160 0.041 -3.938 0.000 -0.326 -0.240 -0.080
SocioDem mrace_combined 0.288 0.079 3.650 0.000 0.247 0.134 0.443
SocioDem pcedlevel 0.879 0.114 7.679 0.000 0.568 0.655 1.104
SocioDem MomOnlyFSIQ 8.008 1.109 7.219 0.000 0.573 5.834 10.183
SocioDem any_subuse_y_n -0.179 0.036 -4.928 0.000 -0.394 -0.250 -0.108
SocioDem hseincom -6.287 5.131 -1.225 0.220 -0.054 -16.345 3.770
SEM_model_2 <- '

Mat_Health =~ diabpprg + gestdiab + hyp + prenatal_collapsed  + hiv + syph + chlmyd

MatMen_health =~ collapsed_mentheal + acescore + Dep_Score + Anx_Score + Anger_Score + Supp_Score + Meaning_Score

Infant =~ imhbirthwt + imh_birthlt + imh_birthhcr + gawks + sex

SocioDem =~ MatAge + mmins_combined + mrace_combined + pcedlevel + MomOnlyFSIQ + any_subuse_y_n + hseincom


any_subuse_y_n ~~ mrace_combined

Mat_Health~~MatMen_health


Mat_Health ~ a*SocioDem
MatMen_health ~ b*SocioDem

Infant ~ c*Mat_Health + d*MatMen_health + e*SocioDem

n2attention ~ f*Infant  
n2regulation ~ g*Infant 
n2arousal ~ h*Infant  
n2tone ~ i*Infant  
n2nonoptref ~ j*Infant  
n2qmove ~ k*Infant  
n2stress ~ l*Infant  

'
SEM_model_fit_2 <- sem(SEM_model_2, estimator= "WLSMV", data=cleaned_data_final2.1, std.lv=TRUE,missing = "pairwise", mimic = "Mplus")
Warning: lavaan->lav_options_est_dwls():  
   estimator "DWLS" is not recommended for continuous data. Did you forget to 
   set the ordered= argument?
Warning: lavaan->lav_data_full():  
   some observed variances are (at least) a factor 1000 times larger than 
   others; use varTable(fit) to investigate
Warning: lavaan->lav_samplestats_from_data():  
   number of observations (291) too small to compute Gamma
Warning: lavaan->lav_model_vcov():  
   The variance-covariance matrix of the estimated parameters (vcov) does not 
   appear to be positive definite! The smallest eigenvalue (= -5.003690e-06) 
   is smaller than zero. This may be a symptom that the model is not 
   identified.
summary(SEM_model_fit_2, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-19 ended normally after 122 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       127

  Number of observations                           291
  Number of missing patterns                        37

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               795.177     654.339
  Degrees of freedom                               467         467
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  2.142
  Shift parameter                                          283.111
    simple second-order correction (WLSMV)                        

Model Test Baseline Model:

  Test statistic                              2686.722    1337.787
  Degrees of freedom                               528         528
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.666

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.848       0.769
  Tucker-Lewis Index (TLI)                       0.828       0.738
                                                                  
  Robust Comparative Fit Index (CFI)                         0.848
  Robust Tucker-Lewis Index (TLI)                            0.828

Root Mean Square Error of Approximation:

  RMSEA                                          0.049       0.037
  90 Percent confidence interval - lower         0.043       0.030
  90 Percent confidence interval - upper         0.055       0.044
  P-value H_0: RMSEA <= 0.050                    0.579       1.000
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.044
  90 Percent confidence interval - upper                     0.064
  P-value H_0: Robust RMSEA <= 0.050                         0.227
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.065       0.065

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  Mat_Health =~                                                           
    diabpprg           0.003    0.003    0.758    0.449     0.003    0.025
    gestdiab           0.003    0.014    0.241    0.810     0.003    0.015
    hyp                0.094    0.038    2.468    0.014     0.095    0.225
    prenatl_cllpsd     0.077    0.034    2.246    0.025     0.078    0.210
    hiv               -0.027    0.020   -1.314    0.189    -0.027   -0.129
    syph               0.023    0.020    1.181    0.238     0.024    0.101
    chlmyd             0.064    0.038    1.698    0.090     0.065    0.162
  MatMen_health =~                                                        
    collapsd_mnthl     0.297    0.051    5.832    0.000     0.306    0.325
    acescore          -0.905    0.149   -6.087    0.000    -0.930   -0.336
    Dep_Score         -7.884    0.425  -18.542    0.000    -8.107   -0.905
    Anx_Score         -8.351    0.459  -18.186    0.000    -8.588   -0.805
    Anger_Score       -6.716    0.557  -12.067    0.000    -6.906   -0.707
    Supp_Score         5.255    0.471   11.148    0.000     5.404    0.653
    Meaning_Score      5.176    0.534    9.687    0.000     5.323    0.583
  Infant =~                                                               
    imhbirthwt         0.371    0.028   13.470    0.000     0.416    0.918
    imh_birthlt        1.522    0.143   10.674    0.000     1.709    0.723
    imh_birthhcr       0.844    0.082   10.337    0.000     0.948    0.666
    gawks              0.298    0.058    5.094    0.000     0.334    0.333
    sex                0.076    0.028    2.690    0.007     0.086    0.172
  SocioDem =~                                                             
    MatAge             0.870    0.378    2.300    0.021     0.870    0.171
    mmins_combined    -0.150    0.040   -3.783    0.000    -0.150   -0.305
    mrace_combined     0.403    0.086    4.708    0.000     0.403    0.345
    pcedlevel          0.788    0.111    7.100    0.000     0.788    0.509
    MomOnlyFSIQ        7.757    1.061    7.312    0.000     7.757    0.555
    any_subuse_y_n    -0.213    0.037   -5.714    0.000    -0.213   -0.470
    hseincom          -6.700    5.511   -1.216    0.224    -6.700   -0.057

Regressions:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  Mat_Health ~                                                            
    SocioDem   (a)     0.124    0.176    0.704    0.482     0.123    0.123
  MatMen_health ~                                                         
    SocioDem   (b)     0.240    0.072    3.318    0.001     0.233    0.233
  Infant ~                                                                
    Mat_Health (c)     0.099    0.422    0.236    0.814     0.089    0.089
    MatMn_hlth (d)     0.181    0.354    0.511    0.609     0.166    0.166
    SocioDem   (e)     0.441    0.167    2.636    0.008     0.393    0.393
  n2attention ~                                                           
    Infant     (f)    -0.010    0.069   -0.140    0.888    -0.011   -0.009
  n2regulation ~                                                          
    Infant     (g)     0.003    0.061    0.042    0.966     0.003    0.003
  n2arousal ~                                                             
    Infant     (h)     0.089    0.098    0.909    0.363     0.100    0.063
  n2tone ~                                                                
    Infant     (i)    -0.060    0.031   -1.943    0.052    -0.067   -0.121
  n2nonoptref ~                                                           
    Infant     (j)    -0.223    0.063   -3.516    0.000    -0.250   -0.221
  n2qmove ~                                                               
    Infant     (k)     0.111    0.070    1.587    0.112     0.125    0.105
  n2stress ~                                                              
    Infant     (l)    -0.046    0.035   -1.316    0.188    -0.051   -0.073

Covariances:
                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
 .mrace_combined ~~                                                        
   .any_subuse_y_n      0.202    0.035    5.702    0.000     0.202    0.458
 .Mat_Health ~~                                                            
   .MatMen_health      -0.781    0.271   -2.883    0.004    -0.781   -0.781
 .n2attention ~~                                                           
   .n2regulation        0.297    0.084    3.525    0.000     0.297    0.215
   .n2arousal          -0.518    0.109   -4.734    0.000    -0.518   -0.255
   .n2tone              0.009    0.040    0.238    0.811     0.009    0.013
   .n2nonoptref         0.122    0.076    1.600    0.110     0.122    0.087
   .n2qmove             0.186    0.077    2.414    0.016     0.186    0.123
   .n2stress            0.057    0.044    1.302    0.193     0.057    0.064
 .n2regulation ~~                                                          
   .n2arousal          -0.478    0.095   -5.034    0.000    -0.478   -0.279
   .n2tone             -0.019    0.034   -0.561    0.575    -0.019   -0.032
   .n2nonoptref        -0.039    0.080   -0.489    0.625    -0.039   -0.033
   .n2qmove             0.136    0.075    1.813    0.070     0.136    0.106
   .n2stress           -0.077    0.047   -1.657    0.097    -0.077   -0.103
 .n2arousal ~~                                                             
   .n2tone              0.323    0.063    5.122    0.000     0.323    0.369
   .n2nonoptref         0.031    0.104    0.293    0.769     0.031    0.017
   .n2qmove            -0.378    0.131   -2.879    0.004    -0.378   -0.200
   .n2stress            0.429    0.074    5.789    0.000     0.429    0.386
 .n2tone ~~                                                                
   .n2nonoptref        -0.044    0.048   -0.911    0.362    -0.044   -0.073
   .n2qmove            -0.088    0.055   -1.583    0.113    -0.088   -0.134
   .n2stress            0.155    0.037    4.230    0.000     0.155    0.403
 .n2nonoptref ~~                                                           
   .n2qmove            -0.282    0.085   -3.332    0.001    -0.282   -0.215
   .n2stress            0.178    0.047    3.747    0.000     0.178    0.231
 .n2qmove ~~                                                               
   .n2stress           -0.383    0.062   -6.134    0.000    -0.383   -0.461

Intercepts:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .diabpprg           1.011    0.006  170.092    0.000     1.011    9.884
   .gestdiab           1.057    0.013   78.931    0.000     1.057    4.546
   .hyp                1.230    0.024   50.396    0.000     1.230    2.918
   .prenatl_cllpsd     1.165    0.021   54.550    0.000     1.165    3.131
   .hiv                1.024    0.012   82.905    0.000     1.024    4.868
   .syph               1.034    0.014   75.810    0.000     1.034    4.452
   .chlmyd             1.100    0.023   46.963    0.000     1.100    2.758
   .collapsd_mnthl     2.014    0.055   36.503    0.000     2.014    2.144
   .acescore           2.758    0.160   17.267    0.000     2.758    0.996
   .Dep_Score         47.667    0.491   97.043    0.000    47.667    5.323
   .Anx_Score         52.164    0.586   88.958    0.000    52.164    4.889
   .Anger_Score       51.645    0.536   96.264    0.000    51.645    5.290
   .Supp_Score        56.181    0.455  123.360    0.000    56.181    6.793
   .Meaning_Score     59.531    0.501  118.714    0.000    59.531    6.524
   .imhbirthwt         3.261    0.027  122.529    0.000     3.261    7.195
   .imh_birthlt       50.265    0.138  363.413    0.000    50.265   21.267
   .imh_birthhcr      34.200    0.083  410.346    0.000    34.200   24.013
   .gawks             38.729    0.059  657.764    0.000    38.729   38.625
   .sex                1.564    0.029   53.597    0.000     1.564    3.147
   .MatAge            29.753    0.299   99.470    0.000    29.753    5.841
   .mmins_combined     3.835    0.029  132.851    0.000     3.835    7.801
   .mrace_combined     3.423    0.069   49.815    0.000     3.423    2.925
   .pcedlevel          4.054    0.089   45.476    0.000     4.054    2.619
   .MomOnlyFSIQ       94.385    0.778  121.311    0.000    94.385    6.758
   .any_subuse_y_n     1.711    0.027   64.203    0.000     1.711    3.770
   .hseincom          20.643    6.465    3.193    0.001    20.643    0.177
   .n2attention        4.627    0.071   65.274    0.000     4.627    3.622
   .n2regulation       4.201    0.063   66.678    0.000     4.201    3.895
   .n2arousal          4.640    0.093   49.658    0.000     4.640    2.911
   .n2tone             4.940    0.033  152.002    0.000     4.940    8.926
   .n2nonoptref        3.122    0.066   47.107    0.000     3.122    2.761
   .n2qmove            6.697    0.070   95.993    0.000     6.697    5.608
   .n2stress           1.637    0.041   39.871    0.000     1.637    2.337

Variances:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .diabpprg           0.010    0.006    1.798    0.072     0.010    0.999
   .gestdiab           0.054    0.012    4.558    0.000     0.054    1.000
   .hyp                0.169    0.014   12.112    0.000     0.169    0.949
   .prenatl_cllpsd     0.133    0.014    9.395    0.000     0.133    0.956
   .hiv                0.044    0.023    1.934    0.053     0.044    0.983
   .syph               0.053    0.024    2.256    0.024     0.053    0.990
   .chlmyd             0.155    0.038    4.032    0.000     0.155    0.974
   .collapsd_mnthl     0.789    0.035   22.759    0.000     0.789    0.894
   .acescore           6.797    0.547   12.428    0.000     6.797    0.887
   .Dep_Score         14.472    3.033    4.771    0.000    14.472    0.180
   .Anx_Score         40.095    4.707    8.517    0.000    40.095    0.352
   .Anger_Score       47.607    6.244    7.624    0.000    47.607    0.500
   .Supp_Score        39.203    4.305    9.106    0.000    39.203    0.573
   .Meaning_Score     54.928    5.518    9.955    0.000    54.928    0.660
   .imhbirthwt         0.032    0.014    2.383    0.017     0.032    0.157
   .imh_birthlt        2.665    0.432    6.174    0.000     2.665    0.477
   .imh_birthhcr       1.130    0.133    8.493    0.000     1.130    0.557
   .gawks              0.894    0.077   11.669    0.000     0.894    0.889
   .sex                0.239    0.006   37.875    0.000     0.239    0.970
   .MatAge            25.188    1.960   12.853    0.000    25.188    0.971
   .mmins_combined     0.219    0.059    3.727    0.000     0.219    0.907
   .mrace_combined     1.206    0.117   10.348    0.000     1.206    0.881
   .pcedlevel          1.774    0.168   10.559    0.000     1.774    0.741
   .MomOnlyFSIQ      134.895   14.541    9.277    0.000   134.895    0.692
   .any_subuse_y_n     0.161    0.018    9.136    0.000     0.161    0.779
   .hseincom       13631.554 4744.188    2.873    0.004 13631.554    0.997
   .n2attention        1.632    0.133   12.292    0.000     1.632    1.000
   .n2regulation       1.163    0.098   11.870    0.000     1.163    1.000
   .n2arousal          2.530    0.165   15.336    0.000     2.530    0.996
   .n2tone             0.302    0.042    7.135    0.000     0.302    0.985
   .n2nonoptref        1.216    0.128    9.476    0.000     1.216    0.951
   .n2qmove            1.410    0.127   11.094    0.000     1.410    0.989
   .n2stress           0.488    0.056    8.752    0.000     0.488    0.995
   .Mat_Health         1.000                                0.985    0.985
   .MatMen_health      1.000                                0.946    0.946
   .Infant             1.000                                0.793    0.793
    SocioDem           1.000                                1.000    1.000
##Regression Table
parameterEstimates(SEM_model_fit_2, standardized=TRUE) %>%
  filter(op == "~") %>%
  select('LV1'=lhs, 'LV2'=rhs, B=est, SE=se, Z=z, 'p-value'=pvalue, Beta=std.all,CI_Lower=ci.lower, CI_Upper=ci.upper) %>%
  knitr::kable(digits = 3, format="html", booktabs=TRUE, caption="Total Sample Regressions")%>%
  kable_classic(full_width = F, html_font = "Cambria")
Total Sample Regressions
LV1 LV2 B SE Z p-value Beta CI_Lower CI_Upper
Mat_Health SocioDem 0.124 0.176 0.704 0.482 0.123 -0.221 0.468
MatMen_health SocioDem 0.240 0.072 3.318 0.001 0.233 0.098 0.381
Infant Mat_Health 0.099 0.422 0.236 0.814 0.089 -0.727 0.926
Infant MatMen_health 0.181 0.354 0.511 0.609 0.166 -0.513 0.876
Infant SocioDem 0.441 0.167 2.636 0.008 0.393 0.113 0.769
n2attention Infant -0.010 0.069 -0.140 0.888 -0.009 -0.146 0.126
n2regulation Infant 0.003 0.061 0.042 0.966 0.003 -0.116 0.121
n2arousal Infant 0.089 0.098 0.909 0.363 0.063 -0.103 0.282
n2tone Infant -0.060 0.031 -1.943 0.052 -0.121 -0.120 0.001
n2nonoptref Infant -0.223 0.063 -3.516 0.000 -0.221 -0.347 -0.099
n2qmove Infant 0.111 0.070 1.587 0.112 0.105 -0.026 0.249
n2stress Infant -0.046 0.035 -1.316 0.188 -0.073 -0.114 0.022
SEM_model_3 <- '
MatMen_health =~ collapsed_mentheal + acescore + Dep_Score + Anx_Score + Anger_Score + Supp_Score + Meaning_Score

Infant =~ imhbirthwt + imh_birthlt + imh_birthhcr + gawks + sex

SocioDem =~ MatAge + mmins_combined + mrace_combined + pcedlevel + MomOnlyFSIQ + any_subuse_y_n + hseincom

#Regressions
diabpprg ~ SocioDem
gestdiab ~ SocioDem
hyp ~ SocioDem
prenatal_collapsed ~ SocioDem
hiv ~ SocioDem
syph ~ SocioDem
chlmyd ~ SocioDem


MatMen_health ~ SocioDem

Infant ~ diabpprg + gestdiab + hyp + prenatal_collapsed  + hiv + syph + chlmyd + any_subuse_y_n + MatMen_health + SocioDem



final_nnns_class ~ Infant  

'


SEM_model_fit_3 <- sem(SEM_model_3, estimator= "WLSMV", data=cleaned_data_final2.1, std.lv=TRUE, missing = "pairwise", mimic = "Mplus")
Warning: lavaan->lav_options_est_dwls():  
   estimator "DWLS" is not recommended for continuous data. Did you forget to 
   set the ordered= argument?
Warning: lavaan->lav_data_full():  
   some observed variances are (at least) a factor 1000 times larger than 
   others; use varTable(fit) to investigate
Warning: lavaan->lav_samplestats_from_data():  
   number of observations (291) too small to compute Gamma
Warning: lavaan->lav_model_vcov():  
   The variance-covariance matrix of the estimated parameters (vcov) does not 
   appear to be positive definite! The smallest eigenvalue (= -4.272624e-06) 
   is smaller than zero. This may be a symptom that the model is not 
   identified.
summary(SEM_model_fit_3, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-19 ended normally after 141 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                        92

  Number of observations                           291
  Number of missing patterns                        27

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               517.691     448.038
  Degrees of freedom                               313         313
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.926
  Shift parameter                                          179.182
    simple second-order correction (WLSMV)                        

Model Test Baseline Model:

  Test statistic                              2073.048    1058.213
  Degrees of freedom                               351         351
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.435

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.881       0.809
  Tucker-Lewis Index (TLI)                       0.867       0.786
                                                                  
  Robust Comparative Fit Index (CFI)                         0.881
  Robust Tucker-Lewis Index (TLI)                            0.867

Root Mean Square Error of Approximation:

  RMSEA                                          0.047       0.039
  90 Percent confidence interval - lower         0.040       0.030
  90 Percent confidence interval - upper         0.055       0.046
  P-value H_0: RMSEA <= 0.050                    0.710       0.993
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.042
  90 Percent confidence interval - upper                     0.064
  P-value H_0: Robust RMSEA <= 0.050                         0.296
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.064       0.064

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  MatMen_health =~                                                        
    collapsd_mnthl     0.290    0.051    5.727    0.000     0.301    0.320
    acescore          -0.899    0.147   -6.102    0.000    -0.933   -0.337
    Dep_Score         -7.908    0.431  -18.366    0.000    -8.207   -0.916
    Anx_Score         -8.279    0.463  -17.889    0.000    -8.592   -0.805
    Anger_Score       -6.583    0.572  -11.517    0.000    -6.832   -0.700
    Supp_Score         5.233    0.479   10.929    0.000     5.430    0.657
    Meaning_Score      5.085    0.533    9.546    0.000     5.277    0.578
  Infant =~                                                               
    imhbirthwt         0.383    0.029   13.249    0.000     0.431    0.951
    imh_birthlt        1.493    0.141   10.593    0.000     1.681    0.711
    imh_birthhcr       0.882    0.079   11.183    0.000     0.993    0.697
    gawks              0.336    0.058    5.805    0.000     0.378    0.377
    sex                0.075    0.027    2.744    0.006     0.084    0.169
  SocioDem =~                                                             
    MatAge             0.926    0.384    2.412    0.016     0.926    0.182
    mmins_combined    -0.179    0.042   -4.247    0.000    -0.179   -0.364
    mrace_combined     0.290    0.080    3.630    0.000     0.290    0.248
    pcedlevel          0.839    0.113    7.434    0.000     0.839    0.542
    MomOnlyFSIQ        7.268    1.105    6.574    0.000     7.268    0.520
    any_subuse_y_n    -0.171    0.038   -4.471    0.000    -0.171   -0.377
    hseincom          -4.040    4.443   -0.909    0.363    -4.040   -0.035

Regressions:
                       Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  diabpprg ~                                                                  
    SocioDem              -0.001    0.002   -0.578    0.564    -0.001   -0.010
  gestdiab ~                                                                  
    SocioDem               0.028    0.024    1.131    0.258     0.028    0.119
  hyp ~                                                                       
    SocioDem              -0.018    0.037   -0.481    0.631    -0.018   -0.042
  prenatal_collapsed ~                                                        
    SocioDem              -0.072    0.024   -2.942    0.003    -0.072   -0.193
  hiv ~                                                                       
    SocioDem              -0.010    0.007   -1.581    0.114    -0.010   -0.049
  syph ~                                                                      
    SocioDem               0.000    0.013    0.026    0.979     0.000    0.001
  chlmyd ~                                                                    
    SocioDem              -0.043    0.020   -2.161    0.031    -0.043   -0.109
  MatMen_health ~                                                             
    SocioDem               0.277    0.073    3.811    0.000     0.267    0.267
  Infant ~                                                                    
    diabpprg              -1.033    0.297   -3.481    0.000    -0.918   -0.094
    gestdiab              -0.133    0.287   -0.462    0.644    -0.118   -0.027
    hyp                   -0.311    0.175   -1.779    0.075    -0.276   -0.116
    prenatl_cllpsd         0.286    0.217    1.320    0.187     0.254    0.095
    hiv                   -0.142    0.150   -0.945    0.345    -0.126   -0.027
    syph                   0.040    0.241    0.166    0.869     0.035    0.008
    chlmyd                 0.293    0.131    2.234    0.025     0.260    0.104
    any_subuse_y_n        -0.150    0.180   -0.832    0.406    -0.133   -0.060
    MatMen_health          0.049    0.070    0.701    0.483     0.045    0.045
    SocioDem               0.444    0.129    3.431    0.001     0.395    0.395
  final_nnns_class ~                                                          
    Infant                -0.015    0.056   -0.265    0.791    -0.017   -0.016

Intercepts:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .collapsd_mnthl     2.014    0.055   36.503    0.000     2.014    2.144
   .acescore           2.758    0.160   17.267    0.000     2.758    0.996
   .Dep_Score         47.667    0.491   97.043    0.000    47.667    5.323
   .Anx_Score         52.164    0.586   88.958    0.000    52.164    4.889
   .Anger_Score       51.645    0.536   96.264    0.000    51.645    5.290
   .Supp_Score        56.181    0.455  123.360    0.000    56.181    6.793
   .Meaning_Score     59.531    0.501  118.714    0.000    59.531    6.524
   .imhbirthwt         3.748    0.305   12.287    0.000     3.748    8.269
   .imh_birthlt       52.164    1.204   43.326    0.000    52.164   22.070
   .imh_birthhcr      35.321    0.703   50.228    0.000    35.321   24.800
   .gawks             39.155    0.275  142.405    0.000    39.155   39.051
   .sex                1.659    0.076   21.886    0.000     1.659    3.339
   .MatAge            29.753    0.299   99.470    0.000    29.753    5.841
   .mmins_combined     3.835    0.029  132.851    0.000     3.835    7.801
   .mrace_combined     3.423    0.069   49.815    0.000     3.423    2.925
   .pcedlevel          4.054    0.089   45.476    0.000     4.054    2.619
   .MomOnlyFSIQ       94.385    0.778  121.311    0.000    94.385    6.758
   .any_subuse_y_n     1.711    0.027   64.203    0.000     1.711    3.770
   .hseincom          20.643    6.465    3.193    0.001    20.643    0.177
   .diabpprg           1.011    0.006  170.092    0.000     1.011    9.884
   .gestdiab           1.057    0.013   78.931    0.000     1.057    4.546
   .hyp                1.230    0.024   50.396    0.000     1.230    2.918
   .prenatl_cllpsd     1.165    0.021   54.550    0.000     1.165    3.131
   .hiv                1.024    0.012   82.905    0.000     1.024    4.868
   .syph               1.034    0.014   75.810    0.000     1.034    4.452
   .chlmyd             1.100    0.023   46.963    0.000     1.100    2.758
   .finl_nnns_clss     2.119    0.096   22.040    0.000     2.119    2.068

Variances:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .collapsd_mnthl     0.792    0.034   23.015    0.000     0.792    0.897
   .acescore           6.793    0.548   12.405    0.000     6.793    0.886
   .Dep_Score         12.846    2.997    4.286    0.000    12.846    0.160
   .Anx_Score         40.027    4.671    8.569    0.000    40.027    0.352
   .Anger_Score       48.628    6.386    7.615    0.000    48.628    0.510
   .Supp_Score        38.914    4.203    9.258    0.000    38.914    0.569
   .Meaning_Score     55.411    5.425   10.214    0.000    55.411    0.666
   .imhbirthwt         0.020    0.013    1.557    0.119     0.020    0.095
   .imh_birthlt        2.760    0.422    6.541    0.000     2.760    0.494
   .imh_birthhcr       1.043    0.126    8.259    0.000     1.043    0.514
   .gawks              0.862    0.075   11.495    0.000     0.862    0.858
   .sex                0.240    0.006   39.070    0.000     0.240    0.971
   .MatAge            25.089    1.958   12.812    0.000    25.089    0.967
   .mmins_combined     0.210    0.059    3.527    0.000     0.210    0.868
   .mrace_combined     1.285    0.120   10.701    0.000     1.285    0.939
   .pcedlevel          1.691    0.181    9.341    0.000     1.691    0.706
   .MomOnlyFSIQ      142.239   15.042    9.456    0.000   142.239    0.729
   .any_subuse_y_n     0.177    0.016   11.012    0.000     0.177    0.858
   .hseincom       13660.090 4763.506    2.868    0.004 13660.090    0.999
   .diabpprg           0.010    0.006    1.797    0.072     0.010    1.000
   .gestdiab           0.053    0.012    4.597    0.000     0.053    0.986
   .hyp                0.177    0.013   13.415    0.000     0.177    0.998
   .prenatl_cllpsd     0.133    0.014    9.835    0.000     0.133    0.963
   .hiv                0.044    0.023    1.892    0.058     0.044    0.998
   .syph               0.054    0.024    2.274    0.023     0.054    1.000
   .chlmyd             0.157    0.039    4.067    0.000     0.157    0.988
   .finl_nnns_clss     1.050    0.060   17.395    0.000     1.050    1.000
   .MatMen_health      1.000                                0.929    0.929
   .Infant             1.000                                0.789    0.789
    SocioDem           1.000                                1.000    1.000
##Regression Table
parameterEstimates(SEM_model_fit_3, standardized=TRUE) %>%
  filter(op == "~") %>%
  select('LV1'=lhs, 'LV2'=rhs, B=est, SE=se, Z=z, 'p-value'=pvalue, Beta=std.all,CI_Lower=ci.lower, CI_Upper=ci.upper) %>%
  knitr::kable(digits = 3, format="html", booktabs=TRUE, caption="Total Sample Regressions")%>%
  kable_classic(full_width = F, html_font = "Cambria")
Total Sample Regressions
LV1 LV2 B SE Z p-value Beta CI_Lower CI_Upper
diabpprg SocioDem -0.001 0.002 -0.578 0.564 -0.010 -0.005 0.003
gestdiab SocioDem 0.028 0.024 1.131 0.258 0.119 -0.020 0.076
hyp SocioDem -0.018 0.037 -0.481 0.631 -0.042 -0.090 0.054
prenatal_collapsed SocioDem -0.072 0.024 -2.942 0.003 -0.193 -0.120 -0.024
hiv SocioDem -0.010 0.007 -1.581 0.114 -0.049 -0.023 0.002
syph SocioDem 0.000 0.013 0.026 0.979 0.001 -0.024 0.025
chlmyd SocioDem -0.043 0.020 -2.161 0.031 -0.109 -0.083 -0.004
MatMen_health SocioDem 0.277 0.073 3.811 0.000 0.267 0.135 0.420
Infant diabpprg -1.033 0.297 -3.481 0.000 -0.094 -1.615 -0.452
Infant gestdiab -0.133 0.287 -0.462 0.644 -0.027 -0.695 0.430
Infant hyp -0.311 0.175 -1.779 0.075 -0.116 -0.654 0.032
Infant prenatal_collapsed 0.286 0.217 1.320 0.187 0.095 -0.139 0.711
Infant hiv -0.142 0.150 -0.945 0.345 -0.027 -0.436 0.153
Infant syph 0.040 0.241 0.166 0.869 0.008 -0.433 0.512
Infant chlmyd 0.293 0.131 2.234 0.025 0.104 0.036 0.550
Infant any_subuse_y_n -0.150 0.180 -0.832 0.406 -0.060 -0.503 0.203
Infant MatMen_health 0.049 0.070 0.701 0.483 0.045 -0.089 0.187
Infant SocioDem 0.444 0.129 3.431 0.001 0.395 0.191 0.698
final_nnns_class Infant -0.015 0.056 -0.265 0.791 -0.016 -0.124 0.094
SEM_model_v2 <- '

Mat_Health =~ diabpprg + gestdiab + prenatal_collapsed + hiv + hyp + syph + chlmyd 

MatMen_health =~ collapsed_mentheal + acescore + Dep_Score + Anx_Score + Anger_Score + Supp_Score + Meaning_Score

Infant =~ imhbirthwt + imh_birthlt + imh_birthhcr + gawks + sex

SocioDem =~ MatAge + mmins_combined + mrace_combined + pcedlevel + MomOnlyFSIQ + any_subuse_y_n + hseincom

hepc    ~~  any_subuse_y_n



Mat_Health~~MatMen_health
SocioDem~~MatMen_health
SocioDem~~Mat_Health

Infant ~ Mat_Health + MatMen_health + SocioDem

final_nnns_class ~ Infant 

'


SEM_model_fit_v2 <- sem(SEM_model_v2,estimator= "WLSMV", data=cleaned_data_final2.1, std.lv=TRUE,missing = "pairwise", mimic = "Mplus")
Warning: lavaan->lav_options_est_dwls():  
   estimator "DWLS" is not recommended for continuous data. Did you forget to 
   set the ordered= argument?
Warning: lavaan->lav_data_full():  
   some observed variances are (at least) a factor 1000 times larger than 
   others; use varTable(fit) to investigate
Warning: lavaan->lav_samplestats_from_data():  
   number of observations (291) too small to compute Gamma
Warning: lavaan->lav_model_vcov():  
   The variance-covariance matrix of the estimated parameters (vcov) does not 
   appear to be positive definite! The smallest eigenvalue (= -5.995598e-06) 
   is smaller than zero. This may be a symptom that the model is not 
   identified.
SEM_model_2.1 <- '

MatMen_health =~ collapsed_mentheal + acescore + Dep_Score + Anx_Score + Anger_Score + Supp_Score + Meaning_Score

Infant =~ imhbirthwt + imh_birthlt + imh_birthhcr + gawks + sex

SocioDem =~ MatAge + mmins_combined + mrace_combined + pcedlevel + MomOnlyFSIQ + any_subuse_y_n + hseincom


any_subuse_y_n ~~ mrace_combined

#Regressions
diabpprg ~ SocioDem
gestdiab ~ SocioDem
hyp ~ SocioDem
prenatal_collapsed ~ SocioDem
hiv ~ SocioDem
syph ~ SocioDem
chlmyd ~ SocioDem

MatMen_health ~ SocioDem

Infant ~ MatMen_health + SocioDem

Infant ~ diabpprg
Infant ~ gestdiab
Infant ~ hyp
Infant ~ prenatal_collapsed
Infant ~ hiv
Infant ~ syph
Infant ~ chlmyd

n2attention ~ Infant  
n2regulation ~ Infant 
n2arousal ~ Infant  
n2tone ~ Infant  
n2nonoptref ~ Infant  
n2qmove ~ Infant  
n2stress ~ Infant  

'
SEM_model_fit_2.1 <- sem(SEM_model_2.1, estimator= "WLSMV", data=cleaned_data_final2.1, std.lv=TRUE,missing = "pairwise", mimic = "Mplus")
Warning: lavaan->lav_options_est_dwls():  
   estimator "DWLS" is not recommended for continuous data. Did you forget to 
   set the ordered= argument?
Warning: lavaan->lav_data_full():  
   some observed variances are (at least) a factor 1000 times larger than 
   others; use varTable(fit) to investigate
Warning: lavaan->lav_samplestats_from_data():  
   number of observations (291) too small to compute Gamma
Warning: lavaan->lav_model_vcov():  
   The variance-covariance matrix of the estimated parameters (vcov) does not 
   appear to be positive definite! The smallest eigenvalue (= -5.105985e-06) 
   is smaller than zero. This may be a symptom that the model is not 
   identified.
summary(SEM_model_fit_2.1, fit.measures = TRUE, standardized=TRUE)
lavaan 0.6-19 ended normally after 161 iterations

  Estimator                                       DWLS
  Optimization method                           NLMINB
  Number of model parameters                       131

  Number of observations                           291
  Number of missing patterns                        37

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               825.060     658.661
  Degrees of freedom                               463         463
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  2.196
  Shift parameter                                          283.026
    simple second-order correction (WLSMV)                        

Model Test Baseline Model:

  Test statistic                              2686.722    1337.787
  Degrees of freedom                               528         528
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.666

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.832       0.758
  Tucker-Lewis Index (TLI)                       0.809       0.724
                                                                  
  Robust Comparative Fit Index (CFI)                         0.832
  Robust Tucker-Lewis Index (TLI)                            0.809

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.038
  90 Percent confidence interval - lower         0.046       0.031
  90 Percent confidence interval - upper         0.058       0.045
  P-value H_0: RMSEA <= 0.050                    0.286       0.999
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.057
  90 Percent confidence interval - lower                     0.046
  90 Percent confidence interval - upper                     0.066
  P-value H_0: Robust RMSEA <= 0.050                         0.138
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.067       0.067

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  MatMen_health =~                                                        
    collapsd_mnthl     0.289    0.051    5.720    0.000     0.302    0.322
    acescore          -0.886    0.147   -6.009    0.000    -0.925   -0.334
    Dep_Score         -7.853    0.430  -18.262    0.000    -8.197   -0.915
    Anx_Score         -8.195    0.467  -17.529    0.000    -8.554   -0.802
    Anger_Score       -6.575    0.567  -11.597    0.000    -6.864   -0.703
    Supp_Score         5.248    0.478   10.968    0.000     5.478    0.662
    Meaning_Score      5.034    0.534    9.423    0.000     5.255    0.576
  Infant =~                                                               
    imhbirthwt         0.357    0.028   12.642    0.000     0.416    0.918
    imh_birthlt        1.434    0.145    9.889    0.000     1.673    0.708
    imh_birthhcr       0.819    0.082   10.002    0.000     0.955    0.670
    gawks              0.300    0.056    5.335    0.000     0.350    0.349
    sex                0.071    0.027    2.607    0.009     0.083    0.166
  SocioDem =~                                                             
    MatAge             0.757    0.382    1.985    0.047     0.757    0.149
    mmins_combined    -0.162    0.040   -4.042    0.000    -0.162   -0.330
    mrace_combined     0.394    0.086    4.599    0.000     0.394    0.337
    pcedlevel          0.736    0.109    6.767    0.000     0.736    0.476
    MomOnlyFSIQ        6.871    1.042    6.594    0.000     6.871    0.492
    any_subuse_y_n    -0.214    0.037   -5.753    0.000    -0.214   -0.471
    hseincom          -3.583    4.826   -0.742    0.458    -3.583   -0.031

Regressions:
                       Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
  diabpprg ~                                                                  
    SocioDem              -0.001    0.002   -0.503    0.615    -0.001   -0.011
  gestdiab ~                                                                  
    SocioDem               0.023    0.024    0.984    0.325     0.023    0.100
  hyp ~                                                                       
    SocioDem              -0.024    0.037   -0.663    0.508    -0.024   -0.058
  prenatal_collapsed ~                                                        
    SocioDem              -0.074    0.025   -2.950    0.003    -0.074   -0.199
  hiv ~                                                                       
    SocioDem              -0.010    0.007   -1.605    0.109    -0.010   -0.050
  syph ~                                                                      
    SocioDem              -0.002    0.013   -0.125    0.900    -0.002   -0.007
  chlmyd ~                                                                    
    SocioDem              -0.047    0.021   -2.250    0.024    -0.047   -0.117
  MatMen_health ~                                                             
    SocioDem               0.300    0.072    4.179    0.000     0.287    0.287
  Infant ~                                                                    
    MatMen_health          0.073    0.074    0.992    0.321     0.065    0.065
    SocioDem               0.551    0.125    4.405    0.000     0.472    0.472
    diabpprg              -1.175    0.281   -4.185    0.000    -1.008   -0.103
    gestdiab              -0.073    0.298   -0.244    0.808    -0.062   -0.014
    hyp                   -0.287    0.182   -1.576    0.115    -0.246   -0.104
    prenatl_cllpsd         0.301    0.229    1.311    0.190     0.258    0.096
    hiv                   -0.115    0.171   -0.674    0.500    -0.099   -0.021
    syph                   0.114    0.267    0.428    0.669     0.098    0.023
    chlmyd                 0.348    0.137    2.535    0.011     0.298    0.119
  n2attention ~                                                               
    Infant                -0.004    0.067   -0.065    0.949    -0.005   -0.004
  n2regulation ~                                                              
    Infant                 0.010    0.058    0.178    0.859     0.012    0.011
  n2arousal ~                                                                 
    Infant                 0.092    0.094    0.980    0.327     0.107    0.067
  n2tone ~                                                                    
    Infant                -0.056    0.030   -1.880    0.060    -0.065   -0.118
  n2nonoptref ~                                                               
    Infant                -0.218    0.060   -3.607    0.000    -0.254   -0.225
  n2qmove ~                                                                   
    Infant                 0.107    0.068    1.587    0.112     0.125    0.105
  n2stress ~                                                                  
    Infant                -0.047    0.034   -1.406    0.160    -0.055   -0.079

Covariances:
                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
 .mrace_combined ~~                                                        
   .any_subuse_y_n      0.200    0.036    5.615    0.000     0.200    0.453
 .n2attention ~~                                                           
   .n2regulation        0.297    0.084    3.520    0.000     0.297    0.215
   .n2arousal          -0.519    0.109   -4.746    0.000    -0.519   -0.255
   .n2tone              0.010    0.040    0.248    0.804     0.010    0.014
   .n2nonoptref         0.124    0.077    1.618    0.106     0.124    0.088
   .n2qmove             0.185    0.077    2.403    0.016     0.185    0.122
   .n2stress            0.058    0.044    1.305    0.192     0.058    0.065
 .n2regulation ~~                                                          
   .n2arousal          -0.479    0.095   -5.049    0.000    -0.479   -0.280
   .n2tone             -0.019    0.034   -0.543    0.587    -0.019   -0.031
   .n2nonoptref        -0.037    0.080   -0.459    0.646    -0.037   -0.031
   .n2qmove             0.135    0.075    1.795    0.073     0.135    0.106
   .n2stress           -0.077    0.047   -1.647    0.100    -0.077   -0.102
 .n2arousal ~~                                                             
   .n2tone              0.323    0.063    5.130    0.000     0.323    0.369
   .n2nonoptref         0.033    0.105    0.314    0.754     0.033    0.019
   .n2qmove            -0.379    0.131   -2.884    0.004    -0.379   -0.201
   .n2stress            0.430    0.074    5.793    0.000     0.430    0.387
 .n2tone ~~                                                                
   .n2nonoptref        -0.044    0.049   -0.904    0.366    -0.044   -0.072
   .n2qmove            -0.088    0.055   -1.587    0.112    -0.088   -0.134
   .n2stress            0.155    0.037    4.225    0.000     0.155    0.403
 .n2nonoptref ~~                                                           
   .n2qmove            -0.281    0.085   -3.321    0.001    -0.281   -0.215
   .n2stress            0.177    0.048    3.720    0.000     0.177    0.230
 .n2qmove ~~                                                               
   .n2stress           -0.382    0.062   -6.129    0.000    -0.382   -0.461

Intercepts:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .collapsd_mnthl     2.014    0.055   36.503    0.000     2.014    2.144
   .acescore           2.758    0.160   17.267    0.000     2.758    0.996
   .Dep_Score         47.667    0.491   97.043    0.000    47.667    5.323
   .Anx_Score         52.164    0.586   88.958    0.000    52.164    4.889
   .Anger_Score       51.645    0.536   96.264    0.000    51.645    5.290
   .Supp_Score        56.181    0.455  123.360    0.000    56.181    6.793
   .Meaning_Score     59.531    0.501  118.714    0.000    59.531    6.524
   .imhbirthwt         3.577    0.277   12.893    0.000     3.577    7.891
   .imh_birthlt       51.533    1.121   45.984    0.000    51.533   21.803
   .imh_birthhcr      34.923    0.642   54.389    0.000    34.923   24.521
   .gawks             38.994    0.240  162.160    0.000    38.994   38.890
   .sex                1.626    0.068   23.748    0.000     1.626    3.273
   .MatAge            29.753    0.299   99.470    0.000    29.753    5.841
   .mmins_combined     3.835    0.029  132.851    0.000     3.835    7.801
   .mrace_combined     3.423    0.069   49.815    0.000     3.423    2.925
   .pcedlevel          4.054    0.089   45.476    0.000     4.054    2.619
   .MomOnlyFSIQ       94.385    0.778  121.311    0.000    94.385    6.758
   .any_subuse_y_n     1.711    0.027   64.203    0.000     1.711    3.770
   .hseincom          20.643    6.465    3.193    0.001    20.643    0.177
   .diabpprg           1.011    0.006  170.092    0.000     1.011    9.884
   .gestdiab           1.057    0.013   78.931    0.000     1.057    4.546
   .hyp                1.230    0.024   50.396    0.000     1.230    2.918
   .prenatl_cllpsd     1.165    0.021   54.550    0.000     1.165    3.131
   .hiv                1.024    0.012   82.905    0.000     1.024    4.868
   .syph               1.034    0.014   75.810    0.000     1.034    4.452
   .chlmyd             1.100    0.023   46.963    0.000     1.100    2.758
   .n2attention        4.623    0.091   50.787    0.000     4.623    3.619
   .n2regulation       4.210    0.078   53.803    0.000     4.210    3.904
   .n2arousal          4.721    0.148   31.872    0.000     4.721    2.962
   .n2tone             4.891    0.060   82.037    0.000     4.891    8.837
   .n2nonoptref        2.930    0.197   14.904    0.000     2.930    2.591
   .n2qmove            6.792    0.126   53.884    0.000     6.792    5.687
   .n2stress           1.596    0.061   25.950    0.000     1.596    2.278

Variances:
                   Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
   .collapsd_mnthl     0.791    0.035   22.846    0.000     0.791    0.897
   .acescore           6.808    0.549   12.399    0.000     6.808    0.888
   .Dep_Score         13.006    3.080    4.223    0.000    13.006    0.162
   .Anx_Score         40.672    4.801    8.471    0.000    40.672    0.357
   .Anger_Score       48.190    6.396    7.535    0.000    48.190    0.506
   .Supp_Score        38.395    4.238    9.059    0.000    38.395    0.561
   .Meaning_Score     55.647    5.473   10.168    0.000    55.647    0.668
   .imhbirthwt         0.032    0.013    2.505    0.012     0.032    0.158
   .imh_birthlt        2.789    0.432    6.451    0.000     2.789    0.499
   .imh_birthhcr       1.117    0.133    8.397    0.000     1.117    0.550
   .gawks              0.883    0.077   11.498    0.000     0.883    0.878
   .sex                0.240    0.006   38.905    0.000     0.240    0.972
   .MatAge            25.372    1.959   12.952    0.000    25.372    0.978
   .mmins_combined     0.215    0.059    3.664    0.000     0.215    0.891
   .mrace_combined     1.214    0.118   10.289    0.000     1.214    0.887
   .pcedlevel          1.853    0.160   11.549    0.000     1.853    0.774
   .MomOnlyFSIQ      147.845   13.833   10.688    0.000   147.845    0.758
   .any_subuse_y_n     0.160    0.018    9.122    0.000     0.160    0.778
   .hseincom       13663.598 4765.918    2.867    0.004 13663.598    0.999
   .diabpprg           0.010    0.006    1.797    0.072     0.010    1.000
   .gestdiab           0.054    0.012    4.589    0.000     0.054    0.990
   .hyp                0.177    0.013   13.362    0.000     0.177    0.997
   .prenatl_cllpsd     0.133    0.014    9.815    0.000     0.133    0.960
   .hiv                0.044    0.023    1.892    0.058     0.044    0.998
   .syph               0.054    0.024    2.273    0.023     0.054    1.000
   .chlmyd             0.157    0.039    4.068    0.000     0.157    0.986
   .n2attention        1.632    0.133   12.292    0.000     1.632    1.000
   .n2regulation       1.163    0.098   11.875    0.000     1.163    1.000
   .n2arousal          2.529    0.165   15.328    0.000     2.529    0.995
   .n2tone             0.302    0.042    7.148    0.000     0.302    0.986
   .n2nonoptref        1.214    0.128    9.461    0.000     1.214    0.950
   .n2qmove            1.411    0.127   11.071    0.000     1.411    0.989
   .n2stress           0.488    0.056    8.761    0.000     0.488    0.994
   .MatMen_health      1.000                                0.918    0.918
   .Infant             1.000                                0.735    0.735
    SocioDem           1.000                                1.000    1.000
##Regression Table
parameterEstimates(SEM_model_fit_2.1, standardized=TRUE) %>%
  filter(op == "~") %>%
  select('LV1'=lhs, 'LV2'=rhs, B=est, SE=se, Z=z, 'p-value'=pvalue, Beta=std.all,CI_Lower=ci.lower, CI_Upper=ci.upper) %>%
  knitr::kable(digits = 3, format="html", booktabs=TRUE, caption="Total Sample Regressions")%>%
  kable_classic(full_width = F, html_font = "Cambria")
Total Sample Regressions
LV1 LV2 B SE Z p-value Beta CI_Lower CI_Upper
diabpprg SocioDem -0.001 0.002 -0.503 0.615 -0.011 -0.006 0.003
gestdiab SocioDem 0.023 0.024 0.984 0.325 0.100 -0.023 0.070
hyp SocioDem -0.024 0.037 -0.663 0.508 -0.058 -0.096 0.048
prenatal_collapsed SocioDem -0.074 0.025 -2.950 0.003 -0.199 -0.123 -0.025
hiv SocioDem -0.010 0.007 -1.605 0.109 -0.050 -0.023 0.002
syph SocioDem -0.002 0.013 -0.125 0.900 -0.007 -0.027 0.024
chlmyd SocioDem -0.047 0.021 -2.250 0.024 -0.117 -0.088 -0.006
MatMen_health SocioDem 0.300 0.072 4.179 0.000 0.287 0.159 0.440
Infant MatMen_health 0.073 0.074 0.992 0.321 0.065 -0.071 0.217
Infant SocioDem 0.551 0.125 4.405 0.000 0.472 0.306 0.796
Infant diabpprg -1.175 0.281 -4.185 0.000 -0.103 -1.726 -0.625
Infant gestdiab -0.073 0.298 -0.244 0.808 -0.014 -0.657 0.511
Infant hyp -0.287 0.182 -1.576 0.115 -0.104 -0.643 0.070
Infant prenatal_collapsed 0.301 0.229 1.311 0.190 0.096 -0.149 0.750
Infant hiv -0.115 0.171 -0.674 0.500 -0.021 -0.450 0.220
Infant syph 0.114 0.267 0.428 0.669 0.023 -0.409 0.637
Infant chlmyd 0.348 0.137 2.535 0.011 0.119 0.079 0.617
n2attention Infant -0.004 0.067 -0.065 0.949 -0.004 -0.136 0.128
n2regulation Infant 0.010 0.058 0.178 0.859 0.011 -0.104 0.125
n2arousal Infant 0.092 0.094 0.980 0.327 0.067 -0.092 0.276
n2tone Infant -0.056 0.030 -1.880 0.060 -0.118 -0.114 0.002
n2nonoptref Infant -0.218 0.060 -3.607 0.000 -0.225 -0.336 -0.099
n2qmove Infant 0.107 0.068 1.587 0.112 0.105 -0.025 0.240
n2stress Infant -0.047 0.034 -1.406 0.160 -0.079 -0.113 0.019