Read excel and arrange the file with descending price

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.1     ✔ stringr   1.5.2
## ✔ ggplot2   4.0.0     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)

bikes <- read_excel("bikes.xlsx")


arrange(select(bikes, model, price), desc(price))
## # A tibble: 97 × 2
##    model                          price
##    <chr>                          <dbl>
##  1 Supersix Evo Black Inc.        12790
##  2 Scalpel-Si Black Inc.          12790
##  3 Habit Hi-Mod Black Inc.        12250
##  4 F-Si Black Inc.                11190
##  5 Supersix Evo Hi-Mod Team       10660
##  6 Synapse Hi-Mod Disc Black Inc.  9590
##  7 Scalpel-Si Race                 9060
##  8 F-Si Hi-Mod Team                9060
##  9 Trigger Carbon 1                8200
## 10 Supersix Evo Hi-Mod Dura Ace 1  7990
## # ℹ 87 more rows

Showing the data that value is greater than the value mean

filter(select(bikes, model, price), price > mean(bikes$price))
## # A tibble: 35 × 2
##    model                          price
##    <chr>                          <dbl>
##  1 Supersix Evo Black Inc.        12790
##  2 Supersix Evo Hi-Mod Team       10660
##  3 Supersix Evo Hi-Mod Dura Ace 1  7990
##  4 Supersix Evo Hi-Mod Dura Ace 2  5330
##  5 Supersix Evo Hi-Mod Utegra      4260
##  6 CAAD12 Black Inc                5860
##  7 CAAD12 Disc Dura Ace            4260
##  8 Synapse Hi-Mod Disc Black Inc.  9590
##  9 Synapse Hi-Mod Disc Red         7460
## 10 Synapse Hi-Mod Dura Ace         5860
## # ℹ 25 more rows