Regresi spasial adalah metode regresi yang digunakan untuk tipe data spasial atau data yang memiliki efek spasial (spatial effect). Efek lokasi (spatial effect) dapat terdiri dari dua jenis yaitu dependensi spasial dan heterogenitas spasial. Dependensi spasial dapat diartikan bahwa pengamatan pada lokasi i bergantung pada pengamatan lain di lokasi j, untuk j≠i. Sedangkan heterogenitas spasial terjadi akibat adanya efek lokasi random, yaitu perbedaan antara satu lokasi dengan lokasi yang lainnya. Dasar berkembangnya metode regresi spasial adalah metode regresi linier klasik (regresi linier berganda). Pengembangan itu berdasarkan adanya pengaruh tempat atau spasial pada data yang dianalisis. Menurut Tobler pada tahun 1979 mengungkapkan di dalam Hukum Geografi pertama, bahwa segala sesuatu saling berhubungan satu dengan yang lainnya, tetapi sesuatu yang dekat lebih mempunyai pengaruh daripada sesuatu yang jauh (Anselin, 1988).
Model regresi linear dalam bentuk matriks: \[ \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \]
dengan: \[ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} \] Bentuk Umum Model Regresi Spasial adalah: Menurut LeSage (1999) menjelaskan bahwa model umum regresi spasial dapat dituliskan sebagai berikut:
\[ \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}, \qquad \mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N(0, \sigma_\epsilon^2 I_n) \]
dengan:
\[ \begin{aligned} \mathbf{y} & = \text{vektor variabel respon berukuran } n \times 1 \\ \rho & = \text{koefisien parameter spasial lag dari variabel respon} \\ \mathbf{W} & = \text{matriks pembobot spasial berukuran } n \times n \\ \mathbf{X} & = \text{matriks variabel prediktor berukuran } n \times (p+1) \\ \boldsymbol{\beta} & = \text{vektor koefisien regresi berukuran } (p+1) \times 1 \\ \lambda & = \text{koefisien parameter spasial error} \\ \mathbf{u} & = \text{vektor error yang mempunyai efek spasial} \end{aligned} \]
library yang digunakan antara lain tmap,
raster, stats, spdep, dan
spatialreg
Import data peta dengan tipe shp dan tabel data pendukung dengan tipe .csv.
#Input Shp File
#data(columbus) # menggunakan data columbus yang berada di package spData
spColumbus <- st_read(system.file("shapes/columbus.shp",
package="spData"), quiet=TRUE)
plot(st_geometry(spColumbus), border="black",col='gray', sub="Peta Columbus")## [1] "AREA" "PERIMETER" "COLUMBUS_" "COLUMBUS_I" "POLYID"
## [6] "NEIG" "HOVAL" "INC" "CRIME" "OPEN"
## [11] "PLUMB" "DISCBD" "X" "Y" "NSA"
## [16] "NSB" "EW" "CP" "THOUS" "NEIGNO"
## [21] "geometry"
## Simple feature collection with 6 features and 20 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 7.950089 ymin: 12.86109 xmax: 10.1806 ymax: 14.74245
## CRS: NA
## AREA PERIMETER COLUMBUS_ COLUMBUS_I POLYID NEIG HOVAL INC CRIME
## 1 0.309441 2.440629 2 5 1 5 80.467 19.531 15.72598
## 2 0.259329 2.236939 3 1 2 1 44.567 21.232 18.80175
## 3 0.192468 2.187547 4 6 3 6 26.350 15.956 30.62678
## 4 0.083841 1.427635 5 2 4 2 33.200 4.477 32.38776
## 5 0.488888 2.997133 6 7 5 7 23.225 11.252 50.73151
## 6 0.283079 2.335634 7 8 6 8 28.750 16.029 26.06666
## OPEN PLUMB DISCBD X Y NSA NSB EW CP THOUS NEIGNO
## 1 2.850747 0.217155 5.03 38.80 44.07 1 1 1 0 1000 1005
## 2 5.296720 0.320581 4.27 35.62 42.38 1 1 0 0 1000 1001
## 3 4.534649 0.374404 3.89 39.82 41.18 1 1 1 0 1000 1006
## 4 0.394427 1.186944 3.70 36.50 40.52 1 1 0 0 1000 1002
## 5 0.405664 0.624596 2.83 40.01 38.00 1 1 1 0 1000 1007
## 6 0.563075 0.254130 3.78 43.75 39.28 1 1 1 0 1000 1008
## geometry
## 1 POLYGON ((8.624129 14.23698...
## 2 POLYGON ((8.25279 14.23694,...
## 3 POLYGON ((8.653305 14.00809...
## 4 POLYGON ((8.459499 13.82035...
## 5 POLYGON ((8.685274 13.63952...
## 6 POLYGON ((9.401384 13.5504,...
Matriks Pembobot pada model Regresi Spasial disusun berdasarkan persinggungan antar wilayah.
#MATRIKS PEMBOBOT QUEEN
queen.nb <- poly2nb(as(spColumbus, "Spatial"), queen = TRUE) #create nb
queen.listw=nb2listw(queen.nb) #convert nb to listw type
queen.columbus= queen.listw
summary(queen.columbus)## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 49
## Number of nonzero links: 236
## Percentage nonzero weights: 9.829238
## Average number of links: 4.816327
## Link number distribution:
##
## 2 3 4 5 6 7 8 9 10
## 5 9 12 5 9 3 4 1 1
## 5 least connected regions:
## 1 6 42 46 47 with 2 links
## 1 most connected region:
## 20 with 10 links
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 49 2401 49 22.75119 203.7091
#Ilustrasi Matriks Pembobot
plot(st_geometry(spColumbus), border="white",col='gray', sub="Pembobot Queen Pada Peta Columbus")
coords <- st_coordinates(st_centroid(st_geometry(spColumbus)))
plot(queen.columbus, coords, add = TRUE, col = "red")Salah satu cara untuk mengetahui adanya dependensi spasial antar lokasi adalah dengan melakukan uji autokorelasi spasial dengan menggunakan statistik Moran’s I. Autokorelasi spasial adalah taksiran dari korelasi antar nilai amatan yang berkaitan dengan lokasi pada variabel yang sama (Yasin dan Saputra, 2013). Jika terdapat pola sistematik dalam penyebaran sebuah variabel, maka terdapat autokorelasi spasial. Menurut Goodchild (1986), untuk mengetahui apakah ada autokorelasi spasial antar lokasi dapat dilakukan uji autokorelasi spasial dengan menggunakan Moran’s I.
#Moran Test: Pembobot Queen
#Variabel Respon CRIME
moran.test(spColumbus$CRIME,queen.columbus,randomisation=FALSE)##
## Moran I test under normality
##
## data: spColumbus$CRIME
## weights: queen.columbus
##
## Moran I statistic standard deviate = 5.6303, p-value = 8.994e-09
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.500188557 -0.020833333 0.008563413
##
## Moran I test under normality
##
## data: spColumbus$HOVAL
## weights: queen.columbus
##
## Moran I statistic standard deviate = 2.1713, p-value = 0.01496
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.180093114 -0.020833333 0.008563413
##
## Moran I test under normality
##
## data: spColumbus$INC
## weights: queen.columbus
##
## Moran I statistic standard deviate = 4.7165, p-value = 1.199e-06
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.415628778 -0.020833333 0.008563413
Persamaan: \[ \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \]
#PERSAMAAN REGRESI
reg.eq = CRIME ~ INC + HOVAL
#OLS
reg.OLS=lm(reg.eq,data=spColumbus)
summary(reg.OLS)##
## Call:
## lm(formula = reg.eq, data = spColumbus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.418 -6.388 -1.580 9.052 28.649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 68.6190 4.7355 14.490 < 2e-16 ***
## INC -1.5973 0.3341 -4.780 1.83e-05 ***
## HOVAL -0.2739 0.1032 -2.654 0.0109 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.43 on 46 degrees of freedom
## Multiple R-squared: 0.5524, Adjusted R-squared: 0.5329
## F-statistic: 28.39 on 2 and 46 DF, p-value: 9.341e-09
## [1] 382.7545
LM Test digunakan untuk deteksi awal efek spasial.
##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = reg.eq, data = spColumbus)
## weights: queen.columbus
##
## LMlag = 8.898, df = 1, p-value = 0.002855
##
##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = reg.eq, data = spColumbus)
## weights: queen.columbus
##
## LMerr = 5.2062, df = 1, p-value = 0.02251
##
##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = reg.eq, data = spColumbus)
## weights: queen.columbus
##
## RLMlag = 3.7357, df = 1, p-value = 0.05326
##
##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = reg.eq, data = spColumbus)
## weights: queen.columbus
##
## RLMerr = 0.043906, df = 1, p-value = 0.834
##
##
## Lagrange multiplier diagnostics for spatial dependence
##
## data:
## model: lm(formula = reg.eq, data = spColumbus)
## weights: queen.columbus
##
## SARMA = 8.9419, df = 2, p-value = 0.01144
Spatial Cross Regressive (SCR) merupakan model regresi spasial, dimana efek spasial melekat pada variabel independen (). Menurut LeSage & Pace (2009) dalam hal pemodelan, variabel lag spasial dari prediktor () dapat berperan langsung dalam menentukan nilai dari variabel dependen ().
Persamaan Model SCR: \[ \mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \mathbf{W} \mathbf{X} \boldsymbol{\gamma} + \mathbf{\epsilon} \]
##
## Call:
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[-1], collapse = "+"))),
## data = as.data.frame(x), weights = weights)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36.342 -7.662 -0.013 7.978 25.572
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 74.5534 6.7156 11.101 2.42e-14 ***
## INC -1.0974 0.3738 -2.936 0.00528 **
## HOVAL -0.2944 0.1017 -2.896 0.00587 **
## lag.INC -1.3987 0.5601 -2.497 0.01633 *
## lag.HOVAL 0.2148 0.2079 1.033 0.30712
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.91 on 44 degrees of freedom
## Multiple R-squared: 0.6105, Adjusted R-squared: 0.5751
## F-statistic: 17.24 on 4 and 44 DF, p-value: 1.413e-08
## [1] 379.9412
## [1] 382.7545
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 6.8133, df = 2, p-value = 0.03315
## sample estimates:
## Log likelihood of reg.SLX Log likelihood of reg.OLS
## -183.9706 -187.3772
Spatial Autoregressive Model (SAR) disebut juga Spatial Lag Model (SLM) adalah salah satu model spasial dengan pendekatan area dengan memperhitungkan pengaruh spasial lag pada variabel dependen saja. Model ini dinamakan juga Mixed Regressive-Autoregressive karena mengkombinasikan model regresi biasa dengan model regresi spasial lag pada variabel dependen (Anselin, 1988). Persamaan Model SAR: \[ \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{\epsilon} \]
##
## Call:lagsarlm(formula = reg.eq, data = spColumbus, listw = queen.columbus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.652017 -5.334611 0.071473 6.107196 23.302617
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 45.603248 7.257404 6.2837 3.306e-10
## INC -1.048728 0.307406 -3.4115 0.000646
## HOVAL -0.266335 0.089096 -2.9893 0.002796
##
## Rho: 0.42333, LR test value: 9.4065, p-value: 0.0021621
## Asymptotic standard error: 0.11951
## z-value: 3.5422, p-value: 0.00039686
## Wald statistic: 12.547, p-value: 0.00039686
##
## Log likelihood: -182.674 for lag model
## ML residual variance (sigma squared): 96.857, (sigma: 9.8416)
## Number of observations: 49
## Number of parameters estimated: 5
## AIC: 375.35, (AIC for lm: 382.75)
## LM test for residual autocorrelation
## test value: 0.24703, p-value: 0.61917
## [1] 375.3479
## [1] 382.7545
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 9.4065, df = 1, p-value = 0.002162
## sample estimates:
## Log likelihood of reg.SAR Log likelihood of reg.OLS
## -182.6740 -187.3772
Spatial Error Model (SEM) dapat digunakan saat nilai error pada suatu lokasi berkorelasi dengan nilai error dengan lokasi sekitarnya atau dengan kata lain terdapat korelasi spasial antar error. Pada model SEM, bentuk error pada lokasi i merupakan fungsi dari error pada lokasi j dimana j merupakan suatu lokasi yang terletak disekitar lokasi i. Persamaan model SEM: \[ \mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \mathbf{u}, \qquad \mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\epsilon} \]
##
## Call:errorsarlm(formula = reg.eq, data = spColumbus, listw = queen.columbus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34.65998 -6.16943 -0.70623 7.75392 23.43878
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 60.279470 5.365594 11.2344 < 2.2e-16
## INC -0.957305 0.334231 -2.8642 0.0041806
## HOVAL -0.304559 0.092047 -3.3087 0.0009372
##
## Lambda: 0.54675, LR test value: 7.2556, p-value: 0.0070679
## Asymptotic standard error: 0.13805
## z-value: 3.9605, p-value: 7.4786e-05
## Wald statistic: 15.686, p-value: 7.4786e-05
##
## Log likelihood: -183.7494 for error model
## ML residual variance (sigma squared): 97.674, (sigma: 9.883)
## Number of observations: 49
## Number of parameters estimated: 5
## AIC: NA (not available for weighted model), (AIC for lm: 382.75)
## [1] 377.4989
## [1] 382.7545
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 7.2556, df = 1, p-value = 0.007068
## sample estimates:
## Log likelihood of reg.SEM Log likelihood of reg.OLS
## -183.7494 -187.3772
Spatial Durbin Model (SDM) merupakan model regresi spasial yang memiliki bentuk seperti Spatial Autoregressive Model (SAR) yang memiliki spasial lag pada variabel respon (y). Hanya saja, SDM memiliki ciri khas adanya spasial lag pada variabel prediktor (X) (Anselin, 1988).
Persamaan Model SDM: \[ \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{W} \mathbf{X} \boldsymbol{\gamma} + \mathbf{\epsilon} \]
##
## Call:lagsarlm(formula = reg.eq, data = spColumbus, listw = queen.columbus,
## type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.31199 -6.49556 -0.22971 6.17872 22.74795
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 44.320003 13.045474 3.3973 0.0006804
## INC -0.919906 0.334742 -2.7481 0.0059941
## HOVAL -0.297129 0.090416 -3.2863 0.0010153
## lag.INC -0.583913 0.574224 -1.0169 0.3092140
## lag.HOVAL 0.257684 0.187235 1.3763 0.1687404
##
## Rho: 0.40346, LR test value: 4.6627, p-value: 0.030825
## Asymptotic standard error: 0.16133
## z-value: 2.5008, p-value: 0.012392
## Wald statistic: 6.254, p-value: 0.012392
##
## Log likelihood: -181.6393 for mixed model
## ML residual variance (sigma squared): 93.272, (sigma: 9.6578)
## Number of observations: 49
## Number of parameters estimated: 7
## AIC: 377.28, (AIC for lm: 379.94)
## LM test for residual autocorrelation
## test value: 0.36258, p-value: 0.54708
## [1] 377.2785
## [1] 375.3479
## [1] 379.9412
## [1] 382.7545
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 11.476, df = 3, p-value = 0.009412
## sample estimates:
## Log likelihood of reg.SDM Log likelihood of reg.OLS
## -181.6393 -187.3772
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 2.0694, df = 2, p-value = 0.3553
## sample estimates:
## Log likelihood of reg.SDM Log likelihood of reg.SAR
## -181.6393 -182.6740
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 4.6627, df = 1, p-value = 0.03082
## sample estimates:
## Log likelihood of reg.SDM Log likelihood of reg.SLX
## -181.6393 -183.9706
Spatial Durbin Error Model (SDEM) merupakan model regresi spasial yang memiliki bentuk seperti Spatial Error Model (SEM) yang memiliki spasial lag pada variabel error (ε). Hanya saja, SDEM memiliki ciri khas adanya spasial lag pada variabel prediktor (X).
Persamaan Model SDEM: \[ \mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \mathbf{W} \mathbf{X} \boldsymbol{\gamma} + \mathbf{u}, \qquad \mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\epsilon} \]
##
## Call:errorsarlm(formula = reg.eq, data = spColumbus, listw = queen.columbus,
## etype = "emixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.180636 -6.588766 -0.091176 6.387284 23.180560
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 73.645083 8.723875 8.4418 < 2.2e-16
## INC -1.052258 0.321279 -3.2752 0.001056
## HOVAL -0.278174 0.091142 -3.0521 0.002272
## lag.INC -1.204876 0.573642 -2.1004 0.035694
## lag.HOVAL 0.131245 0.207245 0.6333 0.526548
##
## Lambda: 0.40358, LR test value: 4.3832, p-value: 0.036295
## Asymptotic standard error: 0.16352
## z-value: 2.4681, p-value: 0.013584
## Wald statistic: 6.0914, p-value: 0.013584
##
## Log likelihood: -181.779 for error model
## ML residual variance (sigma squared): 93.803, (sigma: 9.6852)
## Number of observations: 49
## Number of parameters estimated: 7
## AIC: NA (not available for weighted model), (AIC for lm: 379.94)
## [1] 377.558
## [1] 377.4989
## [1] 379.9412
## [1] 382.7545
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 11.196, df = 3, p-value = 0.01071
## sample estimates:
## Log likelihood of reg.SDEM Log likelihood of reg.OLS
## -181.7790 -187.3772
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 3.9409, df = 2, p-value = 0.1394
## sample estimates:
## Log likelihood of reg.SDEM Log likelihood of reg.SEM
## -181.7790 -183.7494
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 4.3832, df = 1, p-value = 0.03629
## sample estimates:
## Log likelihood of reg.SDEM Log likelihood of reg.SLX
## -181.7790 -183.9706
Model SARAR merupakan kombinasi dari model SAR dan SEM.
Persamaan Model SAC: \[ \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{u}, \qquad \mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\epsilon} \]
#SAC atau SARAR
reg.SAC=sacsarlm(reg.eq,data=spColumbus, queen.columbus, type="sac")
summary(reg.SAC)##
## Call:sacsarlm(formula = reg.eq, data = spColumbus, listw = queen.columbus,
## type = "sac")
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.35601 -5.04457 -0.18999 6.71177 23.28400
##
## Type: sac
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 47.915359 9.985548 4.7985 1.599e-06
## INC -1.042749 0.328628 -3.1730 0.001509
## HOVAL -0.279841 0.090699 -3.0854 0.002033
##
## Rho: 0.36937
## Asymptotic standard error: 0.19625
## z-value: 1.8821, p-value: 0.059817
## Lambda: 0.14642
## Asymptotic standard error: 0.30102
## z-value: 0.4864, p-value: 0.62668
##
## LR test value: 9.6444, p-value: 0.0080489
##
## Log likelihood: -182.555 for sac model
## ML residual variance (sigma squared): 97.043, (sigma: 9.8511)
## Number of observations: 49
## Number of parameters estimated: 6
## AIC: 377.11, (AIC for lm: 382.75)
## [1] 377.11
## [1] 377.4989
## [1] 375.3479
## [1] 382.7545
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 9.6444, df = 2, p-value = 0.008049
## sample estimates:
## Log likelihood of reg.SAC Log likelihood of reg.OLS
## -182.5550 -187.3772
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 2.3888, df = 1, p-value = 0.1222
## sample estimates:
## Log likelihood of reg.SAC Log likelihood of reg.SEM
## -182.5550 -183.7494
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 0.2379, df = 1, p-value = 0.6257
## sample estimates:
## Log likelihood of reg.SAC Log likelihood of reg.SAR
## -182.555 -182.674
Model ini merupakan model Regresi Spasial paling lengkap. Model ini memuat semua efek spasial pada seluruh komponen model regresi.
Persamaan Model Manski: \[ \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \mathbf{W} \mathbf{X} \boldsymbol{\gamma} + \mathbf{u}, \qquad \mathbf{u} = \lambda \mathbf{W} \mathbf{u} + \boldsymbol{\epsilon} \]
#Manski
reg.Manski=sacsarlm(reg.eq,data=spColumbus, queen.columbus, type="sacmixed")
summary(reg.Manski)##
## Call:sacsarlm(formula = reg.eq, data = spColumbus, listw = queen.columbus,
## type = "sacmixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.64377 -6.54301 -0.36732 5.95810 22.92013
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 53.04801 71.85207 0.7383 0.460335
## INC -0.95880 0.45677 -2.0991 0.035809
## HOVAL -0.28903 0.10277 -2.8126 0.004915
## lag.INC -0.77341 1.78153 -0.4341 0.664196
## lag.HOVAL 0.21846 0.29863 0.7316 0.464436
##
## Rho: 0.28438
## Asymptotic standard error: 0.99595
## z-value: 0.28553, p-value: 0.77524
## Lambda: 0.16325
## Asymptotic standard error: 1.0908
## z-value: 0.14966, p-value: 0.88103
##
## LR test value: 11.594, p-value: 0.020638
##
## Log likelihood: -181.5801 for sacmixed model
## ML residual variance (sigma squared): 94.485, (sigma: 9.7204)
## Number of observations: 49
## Number of parameters estimated: 8
## AIC: 379.16, (AIC for lm: 382.75)
Pemilihan model terbaik dapat dilakukan dengan kriteria AIC terkecil.
## [1] 379.1603
## [1] 377.11
## [1] 377.4989
## [1] 375.3479
## [1] 377.2785
## [1] 377.558
## [1] 379.9412
## [1] 382.7545
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 11.594, df = 4, p-value = 0.02064
## sample estimates:
## Log likelihood of reg.Manski Log likelihood of reg.OLS
## -181.5801 -187.3772
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 4.3386, df = 3, p-value = 0.2271
## sample estimates:
## Log likelihood of reg.Manski Log likelihood of reg.SEM
## -181.5801 -183.7494
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 2.1877, df = 3, p-value = 0.5344
## sample estimates:
## Log likelihood of reg.Manski Log likelihood of reg.SAR
## -181.5801 -182.6740
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 4.7809, df = 2, p-value = 0.09159
## sample estimates:
## Log likelihood of reg.Manski Log likelihood of reg.SLX
## -181.5801 -183.9706
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 0.11824, df = 1, p-value = 0.731
## sample estimates:
## Log likelihood of reg.Manski Log likelihood of reg.SDM
## -181.5801 -181.6393
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 0.39772, df = 1, p-value = 0.5283
## sample estimates:
## Log likelihood of reg.Manski Log likelihood of reg.SDEM
## -181.5801 -181.7790
##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 1.9498, df = 2, p-value = 0.3772
## sample estimates:
## Log likelihood of reg.Manski Log likelihood of reg.SAC
## -181.5801 -182.5550
Berdasarkan output dapat disimpulkan bahwa model terbaiknya adalah model SAR karena memiliki nilai AIC terkecil.