Pendahuluan

Hubungan antara variabel lingkungan sering kali bersifat kompleks dan tidak selalu mengikuti pola linear. Pada dataset airquality, misalnya, konsentrasi Ozone diduga dipengaruhi oleh tingkat Solar.R. Secara teoritis, radiasi matahari dapat memicu pembentukan ozon, tetapi pola hubungan yang muncul di data bisa melengkung atau bervariasi pada rentang tertentu. Oleh karena itu, diperlukan analisis regresi dengan berbagai pendekatan—mulai dari model linear sederhana hingga spline—untuk memperoleh gambaran yang lebih akurat mengenai pola hubungan tersebut.

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.3
## Warning: package 'lubridate' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(splines)
df_airquality <- datasets::airquality
head(df_airquality)
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6
# Cek apakah ada missing value
colSums(is.na(airquality))
##   Ozone Solar.R    Wind    Temp   Month     Day 
##      37       7       0       0       0       0

Dari hasil pemeriksaan, dataset airquality memiliki missing value pada variabel Ozone dan Solar.R. Informasi ini penting sebelum melakukan analisis, karena kita perlu menentukan strategi untuk menangani nilai yang hilang, misalnya dengan menghapus baris, mengisi dengan rata-rata/median, atau menggunakan metode imputasi lainnya.

# Ganti NA pada kolom Ozone dengan median
airquality$Ozone[is.na(airquality$Ozone)] <- median(airquality$Ozone, na.rm = TRUE)

# Ganti NA pada kolom Solar.R dengan median
airquality$Solar.R[is.na(airquality$Solar.R)] <- median(airquality$Solar.R, na.rm = TRUE)

# Cek lagi apakah masih ada missing value
colSums(is.na(airquality))
##   Ozone Solar.R    Wind    Temp   Month     Day 
##       0       0       0       0       0       0

median(…, na.rm = TRUE) menghitung median dengan mengabaikan NA. Baris yang NA kemudian diisi dengan nilai median dari kolom tersebut. Setelah diganti, hasil colSums(is.na()) akan menunjukkan 0 → artinya tidak ada lagi missing value.

Data Air Quality

ggplot(df_airquality,aes(x=Solar.R, y=Ozone)) +
                 geom_point(alpha=0.55, color="black") + 
                 theme_bw() 
## Warning: Removed 42 rows containing missing values or values outside the scale range
## (`geom_point()`).

* Dari grafik terlihat hubungan tidak sepenuhnya linear → ada indikasi kurva. * Hal ini menjadi dasar kita perlu coba model non-linear (tangga, spline).

Regresi Linear

mod_linear = lm(Ozone~Solar.R,data=df_airquality)
summary(mod_linear)
## 
## Call:
## lm(formula = Ozone ~ Solar.R, data = df_airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.292 -21.361  -8.864  16.373 119.136 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 18.59873    6.74790   2.756 0.006856 ** 
## Solar.R      0.12717    0.03278   3.880 0.000179 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31.33 on 109 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.1213, Adjusted R-squared:  0.1133 
## F-statistic: 15.05 on 1 and 109 DF,  p-value: 0.0001793
ggplot(df_airquality,aes(x=Solar.R, y=Ozone)) +
                 geom_point(alpha=0.55, color="black") +
   stat_smooth(method = "lm", 
               formula = y~x,lty = 1, col = "blue",se = F)+
  theme_bw()
## Warning: Removed 42 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 42 rows containing missing values or values outside the scale range
## (`geom_point()`).

Dari grafik terlihat bahwa linear fit cukup oke di bagian tengah, tapi di ekor (nilai kecil & besar) tidak mengikuti pola dengan baik → indikasi perlu model lebih fleksibel.

Regresi Fungsi Tangga

mod_tangga = lm(Ozone ~ cut(Solar.R,5),data=df_airquality)
summary(mod_tangga)
## 
## Call:
## lm(formula = Ozone ~ cut(Solar.R, 5), data = df_airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -45.743 -20.647  -6.437  14.853 112.257 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 15.167      7.071   2.145 0.034254 *  
## cut(Solar.R, 5)(72.4,138]   10.271     10.308   0.996 0.321338    
## cut(Solar.R, 5)(138,203]    37.214      9.637   3.862 0.000194 ***
## cut(Solar.R, 5)(203,269]    40.576      8.702   4.663 9.13e-06 ***
## cut(Solar.R, 5)(269,334]    29.690      9.637   3.081 0.002629 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30 on 106 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.2167, Adjusted R-squared:  0.1871 
## F-statistic: 7.331 on 4 and 106 DF,  p-value: 2.984e-05
ggplot(df_airquality,aes(x=Solar.R, y=Ozone)) +
                 geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~cut(x,5), 
               lty = 1, col = "blue",se = F)+
  theme_bw()
## Warning: Removed 42 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 42 rows containing missing values or values outside the scale range
## (`geom_point()`).

* Membagi Solar.R jadi 5 kategori (lebih detail). * Garis biru menunjukkan rata-rata Ozone per interval. * Hasilnya “berundak” (fungsi tangga). * Mudah dipahami, tapi kehilangan informasi variasi halus.

Regresi Spline

mod_spline3 = lm(Ozone ~ bs(Solar.R, knots = c(5, 10, 20, 30, 40)),data=df_airquality)
summary(mod_spline3)
## 
## Call:
## lm(formula = Ozone ~ bs(Solar.R, knots = c(5, 10, 20, 30, 40)), 
##     data = df_airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -45.255 -18.910  -3.842  15.718 109.745 
## 
## Coefficients: (1 not defined because of singularities)
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                  12.665     13.828   0.916  0.36189
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))1    3.279     32.834   0.100  0.92065
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))2  -22.451     51.623  -0.435  0.66454
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))3   28.804     44.766   0.643  0.52136
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))4  -15.621     31.049  -0.503  0.61596
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))5    4.717     22.568   0.209  0.83485
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))6    4.984     23.393   0.213  0.83171
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))7   98.325     35.535   2.767  0.00671
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))8       NA         NA      NA       NA
##                                              
## (Intercept)                                  
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))1   
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))2   
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))3   
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))4   
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))5   
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))6   
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))7 **
## bs(Solar.R, knots = c(5, 10, 20, 30, 40))8   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 29.78 on 103 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.2502, Adjusted R-squared:  0.1993 
## F-statistic:  4.91 on 7 and 103 DF,  p-value: 8.159e-05
mod_spline3ns = lm(Ozone ~ ns(Solar.R, knots = c(5, 10, 20, 30, 40)),data=df_airquality)
summary(mod_spline3ns)
## 
## Call:
## lm(formula = Ozone ~ ns(Solar.R, knots = c(5, 10, 20, 30, 40)), 
##     data = df_airquality)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.020 -23.768  -3.773  14.152 115.599 
## 
## Coefficients: (1 not defined because of singularities)
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                                   80.99      39.20   2.066   0.0413
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))1   -50.30      49.37  -1.019   0.3106
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))2   -66.02      49.84  -1.325   0.1882
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))3   -83.57      38.60  -2.165   0.0327
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))4    35.06      19.99   1.753   0.0824
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))5  -110.05     107.17  -1.027   0.3069
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))6       NA         NA      NA       NA
##                                             
## (Intercept)                                *
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))1  
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))2  
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))3 *
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))4 .
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))5  
## ns(Solar.R, knots = c(5, 10, 20, 30, 40))6  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.29 on 105 degrees of freedom
##   (42 observations deleted due to missingness)
## Multiple R-squared:  0.2089, Adjusted R-squared:  0.1712 
## F-statistic: 5.544 on 5 and 105 DF,  p-value: 0.000143
ggplot(df_airquality,aes(x=Solar.R, y=Ozone)) +
                 geom_point(alpha=0.55, color="black") +
  stat_smooth(method = "lm", 
               formula = y~bs(x, knots = c(5, 10, 20, 30, 40)), 
               lty = 1, aes(col = "Cubic Spline"),se = F)+
    stat_smooth(method = "lm", 
               formula = y~ns(x, knots = c(5, 10, 20, 30, 40)), 
               lty = 1, aes(col = "Natural Cubic Spline"),se = F)+labs(color="Tipe Spline")+
  scale_color_manual(values = c("Natural Cubic Spline"="red","Cubic Spline"="blue"))+theme_bw()
## Warning: Removed 42 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Removed 42 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 42 rows containing missing values or values outside the scale range
## (`geom_point()`).

* Garis biru = cubic spline, merah = natural spline. * Keduanya mengikuti pola data lebih baik daripada regresi linear. * Natural spline lebih “jinak” di ekor → cocok untuk data lingkungan yang rawan outlier. *Dari sini terlihat: spline memberi fleksibilitas untuk menangkap hubungan non-linear.

Komparasi Model

# Fungsi MSE
MSE <- function(pred, actual) {
  mean((pred - actual)^2, na.rm = TRUE)
}

# Buat prediksi dari masing-masing model
pred_linear  <- predict(mod_linear)
pred_tangga  <- predict(mod_tangga)
pred_spline  <- predict(mod_spline3)
pred_nspline <- predict(mod_spline3ns)
compare_stats <- data.frame(
  Model   = c("Linear","Tangga","Spline","Natural Spline"),
  MSE     = c(MSE(pred_linear, df_airquality$Ozone),
              MSE(pred_tangga, df_airquality$Ozone),
              MSE(pred_spline, df_airquality$Ozone),
              MSE(pred_nspline, df_airquality$Ozone)),
  AIC     = c(AIC(mod_linear),
              AIC(mod_tangga),
              AIC(mod_spline3),
              AIC(mod_spline3ns)),
  Adj_R2  = c(summary(mod_linear)$adj.r.squared,
              summary(mod_tangga)$adj.r.squared,
              summary(mod_spline3)$adj.r.squared,
              summary(mod_spline3ns)$adj.r.squared)
)
## Warning in pred - actual: longer object length is not a multiple of shorter
## object length
## Warning in pred - actual: longer object length is not a multiple of shorter
## object length
## Warning in pred - actual: longer object length is not a multiple of shorter
## object length
## Warning in pred - actual: longer object length is not a multiple of shorter
## object length
compare_stats
##            Model      MSE      AIC    Adj_R2
## 1         Linear 1293.729 1083.714 0.1132809
## 2         Tangga 1405.729 1076.964 0.1871312
## 3         Spline 1429.093 1078.108 0.1992623
## 4 Natural Spline 1404.240 1080.069 0.1711837

Tugas Analisis

  1. Dengan menggunakan model dan syntax yang sama, lakukan perbandingan antara variabel Ozone dengan Temp.
  2. Ulangi analisis untuk hubungan antara Ozone dengan Wind.
  3. Bandingkan hasil dari masing-masing model berdasarkan nilai MSE, AIC, dan Adjusted R-squared.
  4. Berikan insight dan pendapatmu.

Pendahuluan

Analisis ini menggunakan dataset bawaan R yaitu airquality, yang berisi data kualitas udara di New York pada Mei–September 1973. Tujuan analisis adalah membandingkan hubungan antara Ozone (sebagai variabel respon) dengan dua variabel prediktor utama: Temp (suhu) dan Wind (kecepatan angin).

Model yang digunakan meliputi regresi linear, model tangga (step function), spline, dan natural spline. Kinerja model dievaluasi dengan MSE (Mean Squared Error), AIC, dan Adjusted R-squared. Hasil ini akan digunakan untuk memahami variabel mana yang lebih baik dalam menjelaskan variasi Ozone, serta memberikan insight mengenai pola hubungan yang terbentuk.

1. Analisis Ozone ~ Temp

library(splines)
library(Metrics)
## Warning: package 'Metrics' was built under R version 4.4.3

Data

df_airquality <- na.omit(airquality)

Model

mod_linear_Temp  <- lm(Ozone ~ Temp, data=df_airquality)
mod_tangga_Temp  <- lm(Ozone ~ cut(Temp, 5), data=df_airquality)
mod_spline_Temp  <- lm(Ozone ~ bs(Temp, knots=c(70,80,90)), data=df_airquality)
mod_nspline_Temp <- lm(Ozone ~ ns(Temp, knots=c(70,80,90)), data=df_airquality)

Prediksi

pred_linear_Temp  <- predict(mod_linear_Temp)
pred_tangga_Temp  <- predict(mod_tangga_Temp)
pred_spline_Temp  <- predict(mod_spline_Temp)
pred_nspline_Temp <- predict(mod_nspline_Temp)

Ringkasan hasil Temp

compare_Temp <- data.frame(
  Model   = c("Linear","Tangga","Spline","Natural Spline"),
  MSE     = c(mse(df_airquality$Ozone, pred_linear_Temp),
              mse(df_airquality$Ozone, pred_tangga_Temp),
              mse(df_airquality$Ozone, pred_spline_Temp),
              mse(df_airquality$Ozone, pred_nspline_Temp)),
  AIC     = c(AIC(mod_linear_Temp),AIC(mod_tangga_Temp),
              AIC(mod_spline_Temp),AIC(mod_nspline_Temp)),
  Adj_R2  = c(summary(mod_linear_Temp)$adj.r.squared,
              summary(mod_tangga_Temp)$adj.r.squared,
              summary(mod_spline_Temp)$adj.r.squared,
              summary(mod_nspline_Temp)$adj.r.squared)
)
print(compare_Temp)
##            Model      MSE      AIC    Adj_R2
## 1         Linear 535.8932 1401.637 0.3567682
## 2         Tangga 493.3074 1394.968 0.3958816
## 3         Spline 471.2354 1391.965 0.4150063
## 4 Natural Spline 471.5385 1388.063 0.4225404

Visualisasi Linear & Spline

plot(df_airquality$Temp, df_airquality$Ozone,
     main="Hubungan Ozone ~ Temp", xlab="Temp", ylab="Ozone", pch=19, col="darkgray")
lines(df_airquality$Temp, pred_linear_Temp, col="blue", lwd=2)
lines(df_airquality$Temp[order(df_airquality$Temp)],
      pred_spline_Temp[order(df_airquality$Temp)], col="red", lwd=2)
legend("topleft", legend=c("Linear","Spline"), col=c("blue","red"), lwd=2)

2. Analisis Ozone ~ Wind

Model

mod_linear_Wind  <- lm(Ozone ~ Wind, data=df_airquality)
mod_tangga_Wind  <- lm(Ozone ~ cut(Wind, 5), data=df_airquality)
mod_spline_Wind  <- lm(Ozone ~ bs(Wind, knots=c(5,10,15)), data=df_airquality)
mod_nspline_Wind <- lm(Ozone ~ ns(Wind, knots=c(5,10,15)), data=df_airquality)

Prediksi

pred_linear_Wind  <- predict(mod_linear_Wind)
pred_tangga_Wind  <- predict(mod_tangga_Wind)
pred_spline_Wind  <- predict(mod_spline_Wind)
pred_nspline_Wind <- predict(mod_nspline_Wind)

Ringkasan hasil Wind

compare_Wind <- data.frame(
  Model   = c("Linear","Tangga","Spline","Natural Spline"),
  MSE     = c(mse(df_airquality$Ozone, pred_linear_Wind),
              mse(df_airquality$Ozone, pred_tangga_Wind),
              mse(df_airquality$Ozone, pred_spline_Wind),
              mse(df_airquality$Ozone, pred_nspline_Wind)),
  AIC     = c(AIC(mod_linear_Wind),AIC(mod_tangga_Wind),
              AIC(mod_spline_Wind),AIC(mod_nspline_Wind)),
  Adj_R2  = c(summary(mod_linear_Wind)$adj.r.squared,
              summary(mod_tangga_Wind)$adj.r.squared,
              summary(mod_spline_Wind)$adj.r.squared,
              summary(mod_nspline_Wind)$adj.r.squared)
)
print(compare_Wind)
##            Model      MSE      AIC    Adj_R2
## 1         Linear 601.3750 1419.276 0.2781705
## 2         Tangga 545.7385 1410.423 0.3316730
## 3         Spline 459.0189 1387.946 0.4301719
## 4 Natural Spline 513.3298 1401.056 0.3713616

Visualisasi Linear & Spline

plot(df_airquality$Wind, df_airquality$Ozone,
     main="Hubungan Ozone ~ Wind", xlab="Wind", ylab="Ozone", pch=19, col="darkgray")
lines(df_airquality$Wind, pred_linear_Wind, col="blue", lwd=2)
lines(df_airquality$Wind[order(df_airquality$Wind)],
      pred_spline_Wind[order(df_airquality$Wind)], col="red", lwd=2)
legend("topright", legend=c("Linear","Spline"), col=c("blue","red"), lwd=2)

## 3. Bandingkan Hasil Temp vs Wind # Tambahkan variabel identitas

compare_Temp$Variabel <- "Temp"
compare_Wind$Variabel <- "Wind"

Gabungkan

compare_all <- rbind(compare_Temp, compare_Wind)
print(compare_all)
##            Model      MSE      AIC    Adj_R2 Variabel
## 1         Linear 535.8932 1401.637 0.3567682     Temp
## 2         Tangga 493.3074 1394.968 0.3958816     Temp
## 3         Spline 471.2354 1391.965 0.4150063     Temp
## 4 Natural Spline 471.5385 1388.063 0.4225404     Temp
## 5         Linear 601.3750 1419.276 0.2781705     Wind
## 6         Tangga 545.7385 1410.423 0.3316730     Wind
## 7         Spline 459.0189 1387.946 0.4301719     Wind
## 8 Natural Spline 513.3298 1401.056 0.3713616     Wind

4. Insight & Pendapat

Dari hasil analisis, terlihat bahwa model dengan prediktor Temp cenderung menghasilkan nilai MSE yang lebih rendah dan Adjusted R² yang lebih tinggi dibandingkan dengan model menggunakan Wind. Hal ini menunjukkan bahwa suhu lebih kuat dalam menjelaskan variasi kadar Ozone. Secara teori, hal ini masuk akal karena pembentukan ozon di atmosfer dipengaruhi oleh intensitas radiasi matahari dan suhu udara—semakin panas suhu, semakin aktif reaksi kimia yang meningkatkan konsentrasi ozon.

Sementara itu, variabel Wind memang berpengaruh, tetapi hubungannya cenderung negatif: semakin kencang angin, ozon lebih cepat tersebar dan konsentrasinya menurun. Meski hubungan ini ada, kekuatannya tidak sebesar suhu.

Selain itu, model spline dan natural spline umumnya memberikan hasil yang lebih baik daripada model linear, karena pola hubungan Ozone dengan Temp maupun Wind tidak sepenuhnya lurus. Fleksibilitas spline membantu menangkap pola melengkung atau non-linear dalam data.

Kesimpulan: Variabel Temp merupakan prediktor yang lebih baik dibandingkan Wind dalam menjelaskan variasi Ozone. Namun, dalam konteks prediksi yang lebih akurat, sebaiknya kedua variabel ini (dan variabel lain seperti Solar.R) digunakan bersama-sama dalam model multivariat.