lambda <- 3
dias <- 150
poisson_sample <- rpois(dias, lambda)
mean(poisson_sample)
## [1] 2.96
sd(poisson_sample)
## [1] 1.783143
mean2 <- 500
n2 <- 1000
exp_sample <- rexp(n2, rate = 1/mean2)
mean(exp_sample > 700)
## [1] 0.253
p_def <- 0.05
lotes <- 100
tam <- 50
binom_samples <- rbinom(lotes, size = tam, prob = p_def)
mean(binom_samples)
## [1] 2.23
mu4 <- 100
sd4 <- 15
n4 <- 365
norm_sample <- rnorm(n4, mean = mu4, sd = sd4)
mean(norm_sample > 130)
## [1] 0.03835616
hist(norm_sample, breaks=20, main="Demanda diaria (N(100,15^2))", xlab="Demanda (MW)")
beta <- 1000
n5 <- 1000
U <- runif(n5)
x5 <- -beta * log(U) # transformada inversa
mean(x5); var(x5) # muestral
## [1] 1079.952
## [1] 1301696
# densidad teorica: dexp(x, rate = 1/beta)
hist(x5, breaks=40, probability=TRUE, main="Tiempos de vida (β=1000)", xlab="Horas")
xs <- seq(0, quantile(x5, 0.995), length.out=200)
lines(xs, dexp(xs, rate=1/beta))
mean(x5 < 940)
## [1] 0.591
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.