Solucion.
set.seed(123)
fallas<- rpois(150,lambda=3)
media_fallas<-mean(fallas)
de_fallas <- sd(fallas)
cat("Media:", media_fallas,"\n")
## Media: 3
cat("Desviacion estandar:",de_fallas,"\n")
## Desviacion estandar: 1.658818
La vida útil (en horas) de un componente electrónico sigue una distribución exponencial con un promedio de 500 horas. Simular 1000 componentes y estimar la probabilidad de que un componente dure más de 700 horas
Solucion.
life<- rexp(1000, rate=1/500)
probabilidad_mayor_700h<-(life<700)
cat("Probabilidad de durar 700 horas o mas:", probabilidad_mayor_700h,"\n\n")
## Probabilidad de durar 700 horas o mas: TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
Solucion.
defec<- rbinom(100,size=50, prob=0.05)
promedio_defec <- mean(defec)
cat("Numero promedio de productos defectuosos por lote:",promedio_defec,"\n\n")
## Numero promedio de productos defectuosos por lote: 2.64
Solucion.
deman <-rnorm(365, mean=100,sd=15)
probabilidad_mayor_de_130<-mean(deman>130)
cat("Probabilidad de superar 130 MW:",probabilidad_mayor_de_130,"\n\n")
## Probabilidad de superar 130 MW: 0.01917808
hist(deman, breaks=20, probability=TRUE,
main= "Histograma demanda diaria",
xlab="Demanda (MW)",col="red")
curve(dnorm(x,mean=100,sd=15), add=TRUE,col="blue",lwd=2)
Solucion de los puntos.
u <- runif(1000)
vida_cap <- -1000 * log(1 - u)
cat("Metodo inversa:",vida_cap,"\n\n")
## Metodo inversa: 2899.518 23.34204 195.1791 3555.333 1608.128 7960.479 302.1103 872.7109 75.04059 1620.922 2124.986 2203.913 11.39165 276.2814 934.6301 450.547 1235.149 42.98366 1070.524 262.2605 318.7977 1321.12 196.3266 487.1649 1153.136 536.4701 781.2395 607.3179 135.8935 31.68083 181.1061 1603.857 153.6035 77.35723 28.99019 540.2405 1924.341 401.2076 587.7724 533.554 433.4801 2629.012 2660.04 328.8696 1306.781 244.3479 2817.549 66.45927 4480.205 235.9863 383.5066 129.8466 877.5852 1073.949 5563.593 215.7554 1695.523 966.1431 4241.021 583.0236 1288.026 78.87939 995.1791 241.5449 2514.882 1671.058 1938.747 1696.943 539.7425 3796.425 691.8753 690.2946 420.7903 69.72463 2379.092 249.8979 353.3432 1074.532 836.1401 3550.593 110.8558 784.8216 2469.492 2063.075 2349.037 1508.6 182.927 129.4084 125.8968 565.7529 1502.32 2344.429 555.9385 1658.161 631.8171 1135.078 1421.822 1149.989 1881.113 373.3415 201.8308 98.1865 14.90513 2327.014 1589.895 80.96269 107.2992 191.0299 752.2138 1329.211 125.8112 109.1894 803.5503 343.221 580.6055 126.0671 2546.169 1318.97 619.0244 1115.701 340.372 1088.995 470.1135 1111.465 532.2613 1242.437 329.9996 1342.103 855.4813 24.801 450.5065 581.3362 516.5117 786.9573 1989.21 1451.045 67.66009 125.0169 370.7568 369.15 1318.026 152.5585 3797.5 1929.636 876.8867 2298.237 9.388477 1535.059 2383.811 117.4079 627.0243 1121.927 626.3346 2079.606 512.6365 836.2907 1060.466 336.3959 2225.114 149.3279 814.6238 291.5943 76.45583 1438.214 932.3408 404.956 2404.215 891.6645 2926.686 2326.166 489.3382 1267.555 1756.472 2451.341 139.9736 45.43373 4442.53 493.4432 1241.513 746.4215 489.2293 1267.86 2121.771 129.1526 457.3674 1560.323 242.8365 969.4984 474.3689 926.4302 831.3024 1185.62 1682.781 604.5581 461.9794 1729.681 718.7199 1353.176 1892.72 580.3538 520.7216 1903.256 1298.374 954.6944 1203.976 1379.013 303.605 323.2355 222.4735 2864.634 316.2814 689.9695 37.37781 1618.162 519.5714 616.4193 2675.856 494.1008 1369.698 1530.666 232.5076 58.18724 402.7396 1151.397 1460.045 1058.573 2715.135 3.522147 475.4409 1031.994 104.3306 15.17807 160.8322 1367.709 1915.601 392.9618 310.1588 279.1155 3129.27 687.6995 1185.647 2466.657 938.8477 304.6368 2512.451 1243.452 44.81809 1003.778 1915.504 126.8065 3037.344 41.69723 187.0527 23.42566 494.1486 1235.385 1066.403 665.8097 84.16796 3438.413 821.6009 1261.977 333.272 1620.766 992.1447 2396.466 504.3884 368.5804 1315.628 1187.472 571.461 1647.762 364.7259 2459.886 993.7913 1501.32 1262.817 1088.195 1214.333 213.9805 911.4978 1457.449 269.6797 1176.215 96.77424 1335.758 2894.64 1090.905 1100.862 544.7645 148.4616 633.6811 98.44475 1402.722 456.2237 839.6454 482.9208 227.2001 766.2888 487.5116 1982.572 98.23435 65.55081 182.4384 2743.5 584.3089 1122.074 36.7449 631.9036 46.72854 967.6727 2001.681 217.9933 331.4228 2003.867 32.5594 1524.892 607.097 83.51411 2372.588 209.4954 1370.799 564.8667 1110.277 207.5793 2134.897 50.10184 248.7241 303.5411 1457.618 487.6993 326.5242 80.79313 693.7571 600.4795 4312.621 153.3078 1794.779 29.97426 1508.501 259.6441 143.7089 211.4755 243.1736 2720.701 4493.419 371.0998 147.4923 1081.713 879.268 421.6941 1681.775 332.936 1869.771 147.3659 1980.123 69.47937 571.2985 1139.856 230.4539 2856.65 476.9457 984.1418 202.7313 1076.482 1326.867 684.5432 2030.413 1782.827 4092.276 1099.163 1029.628 46.19608 211.7666 33.13003 1878.589 552.4418 1699.381 164.4738 520.6135 1281.967 61.48594 400.9989 1499.526 1835.456 2044.704 3058.5 484.4365 3008.452 1217.749 548.1492 496.4562 236.44 1396.265 588.9274 603.8822 86.92141 454.3965 2253.347 786.2231 31.31222 491.7309 120.356 324.6981 1271.252 471.6453 1006.379 686.6638 1647.589 872.7247 188.7576 2769.251 55.31281 91.27374 1842.367 546.2616 1264.027 1332.377 4379.673 3243.351 152.9108 1093.479 33.7163 682.2337 1567.109 476.762 2962.285 1080.799 566.9818 1824.381 1633.212 556.9783 399.5683 832.5024 1974.931 881.5778 1035.976 1457.078 1180.442 2015.886 99.48619 941.4529 275.5885 634.2024 333.9663 2506.432 510.3991 833.2019 84.33534 2859.458 1330.968 644.9519 200.7013 1310.693 953.5437 62.98409 54.76815 607.4399 199.625 675.9085 4010.267 253.7601 1246.632 162.6672 745.9697 1763.031 135.66 1713.04 282.3674 102.0526 178.7696 1091.702 1131.429 142.6608 3888.501 158.5415 2844.158 1205.146 839.2438 282.8259 416.8368 1831.095 2544.93 724.359 2190.259 1217.64 551.2359 357.0595 3307.282 133.3264 1140.499 1713.905 243.6969 901.6169 176.3744 520.0792 272.9709 749.9268 1111.56 2381.249 404.6612 277.7799 371.0474 257.2247 131.2519 311.641 2572.475 58.14213 696.0617 1578.841 1819.711 858.6675 276.8741 872.4227 147.9382 659.1561 98.36903 363.7996 1129.191 229.583 502.3921 1623.806 259.1862 80.02585 1506.092 1109.086 715.6171 240.8011 207.8773 944.5544 39.5119 260.6385 1736.918 357.2012 16.22269 3259.271 91.83758 1378.419 1807.939 16.1096 1916.381 799.1685 415.0419 394.0829 1019.487 136.7908 372.6898 874.8672 1423.773 802.2996 1164.071 464.0444 2372.438 3718.734 1452.837 12.34196 739.4089 1604.681 232.5067 488.2194 781.7222 1363.567 405.4638 392.917 551.2016 323.3802 983.7406 44.57679 932.7626 539.6523 44.59893 5021.859 985.0007 1825.359 505.9784 3059.503 475.4549 1714.216 7.252789 2069.433 76.82056 1696.654 881.9933 1148.054 1252.315 328.6503 1119.367 352.4544 846.4051 56.25948 427.1103 688.5161 758.6226 1691.561 714.0164 1890.117 901.8773 771.9638 986.2852 345.2742 837.57 7600.867 2531.419 1466.824 1856.187 2554.641 918.268 458.5525 1374.38 663.318 4.822432 1118.231 516.9235 3061.488 144.2994 474.365 2301.156 1626.284 706.0852 18.25943 288.0463 365.2662 1083.893 103.337 3360.74 2019.089 335.2805 570.3761 416.9544 427.9101 362.6545 2459.426 333.4871 2023.797 1696.584 204.0607 257.7693 1095.495 631.2608 116.1295 157.4123 381.5157 934.4623 2937.751 549.1961 2610.314 104.9618 2012.074 301.7651 334.1204 181.3516 30.4145 103.2723 127.6717 215.8578 1769.563 15.43273 487.2571 2457.556 15.40369 370.558 559.4955 825.8357 2535.343 727.578 1347.227 961.932 230.3564 710.678 63.0062 1489.445 228.4663 1945.425 721.0772 289.8462 1675.308 69.35282 26.54264 906.975 1876.623 602.2087 697.5113 235.2915 1257.325 768.6901 50.38784 1729.996 291.0162 736.9924 395.9982 116.9483 1908.735 979.8698 1884.309 134.6884 1103.378 936.3226 2912.612 868.9884 361.1605 2729.976 1860.206 552.6435 664.8806 1463.262 290.7224 1671.526 1726.508 540.1464 2481.424 73.51272 1661.237 665.3462 364.1812 962.0044 384.5651 1056.521 2475.134 841.8306 1015.809 537.9741 1592.631 1982.505 457.944 669.3107 2266.754 623.2907 234.8721 1127.803 1324.747 1057.55 231.8239 3238.353 6.92106 2324.489 93.9183 1814.587 807.8984 924.8698 1667.92 305.133 40.76673 148.8334 111.3672 192.8639 3248.819 215.7071 403.7378 1178.632 1182.428 337.0216 355.4175 562.0381 482.2854 2373.185 765.2047 934.9828 701.9318 702.0077 551.0431 245.3057 384.5605 276.5709 1.15305 253.3672 3479.093 566.3434 3305.173 295.4725 145.5236 826.8889 567.8358 1987.002 2470.731 963.1437 1838.415 340.0357 2293.908 152.1066 153.0543 866.4715 5302.48 762.4541 137.5515 194.9442 1489.658 1051.283 812.3228 1368.483 420.3953 496.3316 434.1572 974.9588 175.2418 282.9407 2950.165 4451.73 767.1447 46.36618 921.973 1278.981 874.7239 747.5473 436.5948 83.44877 137.4164 455.5098 916.657 271.6032 18.31271 370.8795 81.22379 288.8994 151.8408 462.2176 151.2479 839.322 782.3728 178.7596 2901.018 983.2123 67.04317 199.5714 1101.832 2372.223 1691.835 584.2469 175.7847 181.2498 651.9013 503.9538 1584.353 1468.968 509.4348 994.7843 532.1669 454.7458 969.8363 3122.612 646.402 968.8052 341.3981 523.5187 588.5659 333.4241 3511.2 2142.158 1654.7 1231.777 198.6968 66.11385 112.6996 1885.088 445.3972 1537.12 2386.389 1003.551 954.814 69.92892 276.4044 528.9526 1666.935 476.6516 592.3073 845.1517 140.6566 13.10385 1132.179 1802.753 2752.998 60.22848 1102.698 487.5267 858.3262 149.445 295.491 375.5096 1255.68 209.0921 153.3625 853.578 50.39924 570.9431 659.1519 625.1463 665.925 1337.828 4709.011 1835.137 118.7006 1976.321 838.9855 1149.734 1558.771 515.0437 1919.21 210.2342 684.6268 127.8838 259.6303 2359.133 642.0262 777.5658 3641.817 3590.992 1156.324 1513.942 20.66528 1303.667 2560.041 580.6363 1222.73 1696.766 666.7182 1851.506 678.9954 17.82718 580.6497 649.9434 919.397 585.6331 366.9814 1117.762 939.34 3637.371 193.3842 3620.342 865.876 1339.889 2008.557 1042.665 1186.448 5498.096 1892.951 1451.675 148.1118 100.0291 737.8271 213.7639 1314.775 682.3793 154.0364 1840.217 2835.383 325.6851 162.9652 1226.469 833.1879 94.86296 821.7545 955.1877 795.0026 500.0356 538.999 2352.941 1119.699 3096.442 163.9692 820.3935 103.8458 976.7044 296.2154 652.517 648.4482 1774.852 2259.31 860.0893 2878.751 345.0786 981.681 968.068 1045.881 267.7626 517.1002 187.4746 732.227 877.9391 83.46659 1305.277 952.0903 1111.381 351.1667 447.1758 997.1383 3221.528 453.6239 220.6341 293.1755 664.1763 533.2104 397.8621 441.3695 1151.568 1988.864 632.9344 874.3264 690.2713 1100.538 1164.346 113.5382
media_estandar <- mean(vida_cap)
varianza_estandar <- var(vida_cap)
media_teorica <- 1000
variable_teorica <-1000^2
cat("Media estimada:",media_estandar,"\n\n")
## Media estimada: 1008.111
cat("Varianza estandar:",varianza_estandar,"\n\n")
## Varianza estandar: 962485.1
cat("Media teorica:",media_teorica,"\n\n")
## Media teorica: 1000
cat("Varianza estimada:",variable_teorica,"\n\n")
## Varianza estimada: 1e+06
hist(vida_cap, breaks=30, probability=TRUE,
main="Vida util capacitores",xlab="Horas",col="red")
curve(dexp(x,rate=1/1000),add=TRUE,col="black",lwd=2)
probabilidad_menor_940 <- mean(vida_cap < 940)
cat("Probabilidad de durar 940 horas menos:", probabilidad_menor_940,"\n\n")
## Probabilidad de durar 940 horas menos: 0.594