Algunas funciones más importante en simulación son:
Distribución uniforme: runif(n, min, max)
Distribución normal: rnorm(n, mean, sd)
Distribución exponencial: rexp(n, rate)
Distribución de Poisson: rpois(n, lambda)
Distribución binomial: rbinom(n, size, prob)
1. Un sistema de producción tiene fallas según un proceso de Poisson con una tasa de 3 fallas por día. Simular el número de fallas en un semestre (150 días) y calcular la media y desviación estándar.
fdia <- rpois(150, 3)
fdia
## [1] 1 3 2 3 2 2 6 2 1 8 3 2 3 3 5 0 6 3 7 4 3 7 3 0 4 1 2 7 3 3 3 5 6 2 7 4 7
## [38] 2 1 4 4 6 1 2 3 3 0 3 4 3 3 3 1 1 3 2 3 4 5 0 4 5 1 3 2 3 3 0 4 4 3 4 5 3
## [75] 4 2 4 4 1 5 1 6 1 5 5 4 3 3 2 2 5 2 3 4 3 3 4 4 3 3 3 1 3 6 3 3 1 2 3 5 2
## [112] 1 2 1 6 3 3 1 4 1 4 4 4 3 3 3 1 3 4 5 1 7 2 1 2 6 4 1 2 1 4 5 6 3 3 4 7 2
## [149] 5 3
Mdia <- mean(fdia)
sdFdia <- sd(fdia)
TfallasS <- sum(fdia)
hist(fdia,
main = "Distribución de Fallas Diarias en un Semestre",
xlab = "Número de Fallas por Día",
ylab = "Frecuencia (Días)",
col = "blue",
breaks = seq(-0.5, max(fdia) + 0.5, by = 1))
Mdia; sdFdia; TfallasS
## [1] 3.206667
## [1] 1.727382
## [1] 481
la mayoría de los días presentan entre 2 y 4 fallas, lo que coincide con el comportamiento esperado de un proceso de Poisson
2. La vida útil (en horas) de un componente electrónico sigue una distribución exponencial con un promedio de 500 horas. Simular 1000 componentes y estimar la probabilidad de que un componente dure más de 700 horas.
n_comp <- 1000
horas_util <- 500
tasa_exponencial <- 1 / horas_util
v_comp <- rexp(n_comp, rate = tasa_exponencial)
v_comp
## [1] 469.186963 259.679677 700.720374 345.035443 800.174798 699.322785
## [7] 995.054554 469.239222 270.159262 193.518525 1638.898060 285.641848
## [13] 739.328330 1027.035438 19.839455 141.701474 65.312830 876.388507
## [19] 564.448309 650.950912 772.680705 253.614058 1657.942735 1083.807620
## [25] 2600.880169 20.605120 271.829211 228.840015 93.755215 532.211830
## [31] 329.189838 337.594128 430.300335 289.583516 37.444665 838.082596
## [37] 120.366996 39.299820 325.148620 556.375212 65.981567 274.528135
## [43] 551.303559 2219.423571 298.087636 606.738158 196.656731 41.723520
## [49] 1236.683175 582.937552 821.842692 144.020370 334.698525 477.780864
## [55] 809.720007 195.501625 321.637195 72.154811 1615.216821 42.714335
## [61] 1245.087040 294.900746 335.111878 39.209309 123.009551 354.108228
## [67] 570.088899 12.802118 131.399090 262.124195 763.762972 435.695053
## [73] 76.570473 321.957413 329.386527 721.286351 228.412097 76.648253
## [79] 717.530244 35.583370 307.723307 317.072904 660.021807 283.674928
## [85] 89.201497 336.290926 259.461323 1951.671171 683.247788 242.813518
## [91] 1698.297601 1372.856143 15.196401 542.759626 679.844448 476.442955
## [97] 696.385787 794.304648 166.592451 881.051628 548.355095 1218.607799
## [103] 389.899342 244.360604 219.040639 20.943908 49.781441 398.721634
## [109] 17.340896 2403.926605 2020.790662 1526.529383 535.777753 1528.998323
## [115] 301.710475 759.424568 694.473847 182.507460 419.927067 606.401334
## [121] 59.531482 213.805481 754.960574 737.711443 1019.880535 22.286478
## [127] 258.744141 963.699601 304.323422 515.294464 391.178553 1189.679784
## [133] 107.820066 620.138397 293.522564 511.372276 234.062865 162.934057
## [139] 678.513166 740.899220 135.708840 775.553171 1179.753006 82.985940
## [145] 12.161592 197.505202 14.502092 165.489072 1631.096866 244.940749
## [151] 40.781461 338.319642 143.788832 1162.823426 461.918139 848.143983
## [157] 680.346757 372.603187 974.268786 52.666314 8.481429 1637.984612
## [163] 654.522975 3265.346876 94.729205 41.705522 321.427468 1172.639905
## [169] 506.408542 698.368236 46.735607 1920.864120 447.574514 910.589255
## [175] 136.040773 674.375444 409.879887 33.781486 2074.197057 457.039814
## [181] 70.829684 113.776700 390.922440 303.179337 524.909833 4.419228
## [187] 971.740448 13.548042 526.125574 510.013595 2121.263000 33.356234
## [193] 375.674981 1006.529422 182.763569 381.363328 481.346091 558.144370
## [199] 431.861849 485.489572 171.397174 82.720764 332.518881 785.400110
## [205] 176.508809 186.207935 460.572067 205.789156 368.182388 2120.828465
## [211] 391.691801 889.400630 199.814364 159.491713 1001.577084 631.566768
## [217] 379.778523 460.936852 89.139441 377.256523 715.677037 533.799813
## [223] 709.578321 2305.085638 303.478797 308.750496 1216.420813 43.434460
## [229] 303.594826 117.262883 520.895726 792.177837 563.739135 600.585656
## [235] 565.448873 46.413113 189.724050 76.666502 293.951218 1990.762095
## [241] 204.285168 135.889272 157.153897 1485.236965 572.238700 567.204365
## [247] 256.152963 307.006191 455.906292 550.170579 195.422352 920.720677
## [253] 101.714530 44.244274 121.290171 171.139719 93.163508 553.351539
## [259] 622.336433 823.160213 99.435341 446.430892 275.471380 288.344562
## [265] 711.774667 33.718052 49.616817 329.390763 162.942198 1047.948913
## [271] 460.040064 1162.764558 198.649603 1919.252614 853.402530 958.129779
## [277] 370.118709 742.429864 1038.322957 150.304105 122.725569 173.312684
## [283] 28.855703 193.984091 684.544945 423.680425 342.322983 1872.305060
## [289] 285.498391 282.295562 652.518643 299.264487 48.098736 793.196392
## [295] 303.812556 972.106900 388.432398 41.178433 937.428855 371.596948
## [301] 512.825752 1551.838860 302.747383 213.021101 263.893598 13.394112
## [307] 13.183179 216.924159 375.624356 119.310987 34.747801 453.422441
## [313] 449.030508 1210.540737 127.560866 315.989644 187.028355 499.379344
## [319] 47.117460 132.969073 259.394640 160.289732 578.884183 365.068247
## [325] 218.383047 120.981306 51.712500 52.033161 1043.174371 922.162571
## [331] 54.506019 1163.514369 594.609866 343.426855 137.207482 9.127158
## [337] 911.380450 1609.139675 31.658827 46.492467 185.814615 751.320624
## [343] 186.805766 32.528594 1380.521693 65.825152 129.730904 575.523148
## [349] 211.445831 109.093053 544.162646 702.714058 1208.046458 2405.971506
## [355] 376.418531 397.908581 876.408077 180.467875 673.586039 968.112081
## [361] 840.904881 1649.019852 192.918808 396.661848 294.646753 548.912685
## [367] 190.543568 914.832535 218.551596 965.013072 243.455013 270.388166
## [373] 508.858017 798.497159 96.766700 188.524242 856.026359 62.863932
## [379] 104.176699 707.088107 27.681901 49.695219 497.720533 376.340250
## [385] 845.901803 72.806174 749.415396 289.613622 702.334654 39.477332
## [391] 701.403087 2347.655693 208.266132 1248.457537 154.435663 251.486083
## [397] 1207.741565 326.548012 78.530478 107.743493 228.763528 517.806680
## [403] 540.956480 42.093055 28.034291 4.968897 303.420213 401.985062
## [409] 211.283906 81.443716 217.172415 25.850909 184.428317 457.341009
## [415] 37.392648 799.304717 98.545386 553.804384 54.349814 100.310346
## [421] 945.661504 784.438709 582.042276 63.683084 325.576773 467.305598
## [427] 1124.641473 2120.652908 563.548997 2412.101129 112.208163 749.617536
## [433] 146.296111 270.143133 84.273034 142.178244 51.608449 604.419462
## [439] 217.737564 65.218003 438.542550 740.093453 1977.604742 130.227201
## [445] 2711.037957 440.886644 58.681031 25.740272 1064.761772 163.798240
## [451] 5.885512 615.878826 256.039832 1176.822712 276.819785 223.531678
## [457] 23.346969 291.711926 245.691471 462.405795 1585.841186 1004.801292
## [463] 210.561433 629.626470 338.521451 31.171917 248.866541 205.594690
## [469] 1092.822407 531.911989 247.929805 821.448284 804.703209 27.100648
## [475] 322.645459 364.828662 65.660214 248.108185 90.906240 1295.699312
## [481] 1332.872930 79.307888 27.408289 375.226825 416.226134 3037.842981
## [487] 35.605715 285.086641 204.208707 9.965665 34.688270 48.299277
## [493] 647.509682 26.983828 192.180843 34.149760 1233.971472 567.485935
## [499] 236.626005 68.468297 752.519709 1183.965857 252.940374 282.941216
## [505] 688.202736 226.177634 318.551263 249.437107 129.985696 591.984714
## [511] 242.550727 546.806068 235.727869 1402.669467 397.416706 200.845181
## [517] 69.112388 110.210866 129.367378 252.866783 243.153415 341.140118
## [523] 2175.822384 350.884477 155.305920 8.290206 139.542057 1462.595947
## [529] 782.787880 291.607014 1030.515469 151.877943 724.695133 266.288122
## [535] 193.270267 1054.509466 478.045788 858.717214 13.645765 196.359226
## [541] 1029.717795 652.235129 99.094486 579.367467 766.580516 1403.595690
## [547] 729.426176 356.614086 93.412372 507.360215 228.838200 1494.015913
## [553] 45.226799 548.568834 107.828255 204.816583 364.789438 19.085216
## [559] 208.564278 232.444828 305.717949 300.706369 307.493715 220.464139
## [565] 467.557719 528.712666 407.127138 579.563588 108.926356 301.180307
## [571] 270.265259 816.715171 199.863093 147.342765 605.962314 36.073872
## [577] 904.484254 191.010443 514.929333 87.719748 13.090512 757.675379
## [583] 159.392205 736.677320 115.330724 105.899289 139.224136 754.470785
## [589] 1014.535976 104.535034 123.049998 214.875548 39.559392 251.398770
## [595] 322.981904 731.522547 356.774952 799.249745 212.646251 485.097848
## [601] 1071.908397 17.982315 1134.081271 600.152714 46.357888 53.077286
## [607] 274.976006 346.296350 660.780630 236.553417 381.361316 841.602588
## [613] 80.050662 1021.178720 430.694350 94.827733 405.761721 66.268573
## [619] 61.199528 211.944870 35.363032 315.147776 545.995153 429.211628
## [625] 8.429957 276.072061 843.167466 157.126788 84.285320 374.004293
## [631] 445.071027 351.769491 700.905455 29.087741 207.603115 274.839393
## [637] 606.130033 180.444248 247.825479 219.811450 70.254248 360.806942
## [643] 48.266650 445.816130 75.032940 683.267662 702.561079 479.673951
## [649] 162.847324 48.632699 755.537246 1482.780386 505.278734 382.182304
## [655] 360.439014 497.007996 104.673727 6.597235 46.838309 1063.239739
## [661] 442.225853 150.814670 809.502940 8.708479 681.885982 1797.626021
## [667] 179.756921 46.984284 703.701423 34.773275 149.178088 172.710533
## [673] 97.330351 227.070049 3.237266 600.968622 624.995478 23.093831
## [679] 447.177768 350.114075 670.284937 3520.194998 824.377292 486.960580
## [685] 430.962565 609.085535 565.900149 1463.880073 739.308227 240.609079
## [691] 160.264877 411.851061 198.811971 531.829837 188.359502 637.025046
## [697] 29.436848 75.201781 246.861579 812.690714 1382.883086 59.078093
## [703] 748.994756 110.995338 33.110656 320.143101 743.316215 70.994822
## [709] 20.092511 766.079016 928.226102 423.071655 421.035726 300.100227
## [715] 515.857541 358.087289 290.980477 24.641447 301.343221 476.298398
## [721] 219.290800 124.207945 384.848589 1322.396113 335.928429 435.452688
## [727] 439.888750 627.212426 775.666364 892.685916 185.307097 384.622269
## [733] 1335.880714 93.940510 116.526369 303.196867 474.414113 37.410146
## [739] 893.544345 473.320192 112.858137 739.273851 175.095826 353.001495
## [745] 58.671341 1530.111104 71.325559 550.859074 42.937334 2853.024356
## [751] 193.822981 980.054241 487.345912 851.675736 768.551747 928.446980
## [757] 90.999737 1122.681803 520.685237 72.282026 66.369094 154.094690
## [763] 318.823855 440.196132 954.319411 93.878102 11.700283 468.217882
## [769] 1296.168386 46.157147 363.455032 343.678765 582.846774 776.686219
## [775] 1370.207352 1222.736233 166.248418 1765.028070 1012.721036 5.335805
## [781] 478.172147 628.521062 160.705907 187.386193 195.538364 1789.466168
## [787] 248.155060 145.839202 186.147972 156.833232 96.066126 148.174506
## [793] 149.473261 113.522146 336.000785 194.777053 411.102702 1409.927689
## [799] 60.906830 1513.855006 1043.665181 222.980507 413.820302 199.331355
## [805] 584.727819 26.240552 1099.791805 752.305785 1558.035090 300.092480
## [811] 1410.996836 87.067911 28.987202 426.829862 420.531936 64.644410
## [817] 111.272289 562.603982 520.257948 89.006584 1779.981900 156.408550
## [823] 356.832026 15.012887 407.274768 85.569808 849.627882 651.191160
## [829] 492.684583 104.465629 299.656689 159.668094 125.618997 150.312180
## [835] 625.149182 661.583258 84.218140 315.898561 206.284353 53.586826
## [841] 1441.399115 246.732320 846.350138 198.083197 138.173912 486.091948
## [847] 1502.512270 895.325850 663.542794 271.914522 485.193353 402.548089
## [853] 563.611790 581.244350 163.274419 376.634558 691.718373 727.014481
## [859] 432.308605 645.027070 92.306377 478.513916 125.875729 736.044962
## [865] 542.414067 611.546477 35.823891 392.857971 253.646167 48.676417
## [871] 71.909752 177.802502 67.540591 523.996179 561.311593 844.169702
## [877] 218.449089 8.774942 103.875946 787.815518 17.678377 288.629149
## [883] 817.264833 931.209044 85.634029 12.804752 311.498767 152.495025
## [889] 340.774467 75.132087 28.047542 495.716963 373.436598 374.130971
## [895] 120.803206 473.229400 186.620258 404.082050 1344.531179 240.666399
## [901] 653.174298 1003.146716 275.628170 150.045731 297.464609 440.748148
## [907] 770.131107 797.612078 341.827380 206.883688 1169.847623 765.905596
## [913] 74.577146 863.309741 370.607228 162.226270 90.553723 632.467208
## [919] 1134.502578 446.883848 266.914299 406.898884 557.549231 827.808317
## [925] 9.152248 442.535284 732.933191 1082.666977 519.459859 1046.181678
## [931] 248.981350 755.373393 127.089668 18.130031 349.891659 387.447776
## [937] 179.525300 309.183084 739.714521 405.222920 85.861516 2245.666777
## [943] 414.349787 702.027168 234.228011 427.880699 276.141042 1275.635262
## [949] 29.275879 353.472593 320.806606 153.365501 209.727602 125.657858
## [955] 358.146474 26.234227 69.879421 98.843882 264.362919 150.126234
## [961] 1014.742438 129.483726 111.563570 549.161721 75.317657 253.365195
## [967] 178.870972 541.192396 80.129366 142.257663 776.980759 49.930847
## [973] 641.063756 47.276493 456.519552 453.416252 164.474921 863.859964
## [979] 851.482272 863.022051 914.122054 551.707444 211.036266 43.195363
## [985] 49.376367 1455.427397 938.315657 784.485629 1266.421591 488.391635
## [991] 19.975933 45.530650 709.874979 281.758949 152.148067 878.760206
## [997] 31.620163 510.806142 426.687677 172.053317
prob700 <- mean(v_comp > 700)
media <- mean(v_comp)
sd_simulada <- sd(v_comp)
media; sd_simulada; prob700
## [1] 482.9421
## [1] 482.2781
## [1] 0.242
3. En una línea de ensamblaje, la probabilidad de que un producto sea defectuoso es del 5%. Simular 100 lotes de 50 productos y calcular el número promedio de productos defectuosos por lote.
defectuosos_por_lote <- rbinom(100, 50, 0.05)
promedio_defectuosos <- mean(defectuosos_por_lote)
var_defectuosos <- var(defectuosos_por_lote)
barplot(table(defectuosos_por_lote),
main = "Defectuosos por lote (100 lotes de 50)",
xlab = "Defectuosos por lote",
ylab = "Frecuencia")
promedio_defectuosos; var_defectuosos
## [1] 2.25
## [1] 2.270202
4. La demanda diaria de energía (en MW) sigue una distribución normal con media de 100 MW y desviación estándar de 15 MW. Simular la demanda de un año (365 días) y calcular la probabilidad de que un día supere los 130 MW. y realizar el histograma.
dias <- 365
media_demanda <- 100
desv_demanda <- 15
demanda_diaria <- rnorm(dias, mean = media_demanda, sd = desv_demanda)
demanda_diaria
## [1] 82.78513 89.84769 89.75039 131.01719 106.63599 98.11567 113.32272
## [8] 83.61429 111.55923 97.56590 132.37681 141.88950 111.74558 94.14588
## [15] 129.46655 87.22590 103.98069 113.60736 87.78276 86.53712 78.38793
## [22] 104.93079 81.12973 112.26949 78.81047 104.54272 59.32840 103.55970
## [29] 104.77658 106.70926 109.98966 88.12754 87.62551 127.01447 100.73070
## [36] 124.07715 98.83293 99.28836 89.46523 97.52017 103.93089 89.89428
## [43] 102.32482 109.18286 109.57505 121.59448 97.24548 70.95926 99.05903
## [50] 98.04157 105.87027 116.58199 87.19691 113.73712 79.89511 98.18610
## [57] 102.70477 118.02007 105.36637 85.97862 92.44587 103.80818 86.82906
## [64] 102.48320 78.05620 123.12819 88.54673 113.06283 103.51755 103.99012
## [71] 95.14745 100.34710 100.50921 91.24609 81.83234 131.15885 98.40241
## [78] 104.23608 86.34206 102.40402 102.81752 102.57454 107.87222 129.37058
## [85] 71.09277 101.66461 127.87690 110.81343 102.94033 89.48636 133.81913
## [92] 104.29708 98.01837 77.06282 99.97563 89.16653 78.66353 107.42490
## [99] 108.30879 114.34402 89.25615 102.67626 128.79019 118.31504 94.16898
## [106] 119.77344 59.52204 119.94641 105.76319 117.57635 129.12325 111.13294
## [113] 103.13846 93.19512 83.89043 107.74972 88.27693 83.23628 87.08343
## [120] 88.60932 137.67220 103.91519 113.17546 126.59023 85.58546 133.48432
## [127] 67.91592 102.09208 92.00561 107.30459 97.93456 113.94127 108.10386
## [134] 104.10896 116.21141 77.49084 100.81608 126.42291 92.27287 98.94864
## [141] 118.74260 107.54412 79.84032 75.60900 107.02802 98.84686 114.40436
## [148] 90.67336 99.35403 92.95419 79.72081 101.83640 86.65740 79.75777
## [155] 112.85602 99.69772 81.70511 71.47156 135.44319 106.45096 102.97577
## [162] 75.73836 95.89924 93.80291 121.14472 93.60718 93.60031 117.22794
## [169] 138.38245 90.52281 105.68417 85.55488 89.04084 117.64874 93.71351
## [176] 97.84879 85.33711 72.45763 99.73545 91.70562 104.66902 117.21876
## [183] 93.76792 104.35431 104.05238 89.14502 115.18109 90.50068 85.50669
## [190] 88.66351 110.21655 100.31558 95.44839 112.04988 113.71194 104.85394
## [197] 93.62457 45.30529 114.64150 119.75704 98.32415 109.31426 109.06020
## [204] 104.53024 118.33456 134.70612 92.79289 104.96510 96.71277 78.05433
## [211] 77.00326 63.32444 85.62266 109.82157 92.19667 118.63231 113.86233
## [218] 129.08316 97.33524 101.81430 121.93051 95.27958 90.96273 128.59700
## [225] 93.80867 85.16518 115.28463 102.21210 72.67355 94.59355 93.34010
## [232] 102.80835 88.81878 126.09826 109.98195 110.72547 120.15826 128.20903
## [239] 126.25591 83.45472 83.11832 82.68004 97.73736 131.53516 80.47804
## [246] 100.92204 86.95587 76.81471 118.53081 104.29903 131.01676 92.61326
## [253] 81.24726 106.84435 114.60520 112.73862 117.18320 92.99765 118.65481
## [260] 93.50458 100.28319 95.84550 94.42054 93.66418 102.39772 80.50816
## [267] 94.00801 127.27887 82.62716 105.47093 76.89200 104.64116 96.82958
## [274] 101.79060 103.43626 108.59821 95.72603 117.18149 116.47253 80.58934
## [281] 113.23740 114.19608 88.66017 128.68889 102.79306 134.27778 84.28191
## [288] 97.82575 92.24718 108.37490 96.67696 103.21481 113.81259 135.02457
## [295] 100.76247 98.47485 102.40916 99.50690 97.56237 101.39414 91.95529
## [302] 72.79202 114.58081 88.63229 102.42422 83.89480 94.91103 89.63657
## [309] 117.42582 111.62634 107.09000 77.49745 90.09084 82.58400 89.56516
## [316] 77.76522 114.93025 97.55683 110.10547 125.95270 94.72829 111.01388
## [323] 119.91840 103.92588 76.80308 86.47704 86.42664 73.15684 113.09527
## [330] 88.92281 103.65880 125.55734 113.61373 100.73823 97.72328 98.70147
## [337] 96.07847 93.13282 116.76391 109.17067 99.78138 95.02178 89.26623
## [344] 112.21610 92.92363 99.54397 134.11959 110.88692 101.03227 70.80148
## [351] 117.96174 95.29483 103.32975 111.14779 111.41566 94.88027 101.51167
## [358] 87.18522 92.82734 96.44540 57.71236 101.07369 105.02582 112.01570
## [365] 121.54564
prob_mayor_130 <- mean(demanda_diaria > 130)
hist(demanda_diaria,
main = "Demanda diaria de energía en un año",
xlab = "Demanda (MW)",
ylab = "Frecuencia (días)",
col = "red",
breaks = 20)
mean(demanda_diaria); sd(demanda_diaria); prob_mayor_130
## [1] 100.9889
## [1] 15.76483
## [1] 0.04109589
5. Una empresa de manufactura electrónica quiere simular el tiempo de vida (en horas) de un nuevo modelo de capacitor. Basado en datos históricos, se ha determinado que el tiempo de vida sigue una distribución exponencial con parámetro β = 1000 horas, que representa el tiempo medio de vida de los capacitores.
Generar 1000 tiempos de vida del capacitor aplicando el método de la transformada inversa.
Estimar la media y la varianza de los tiempos generados y compararlas con los valores teóricos.
Gra car el histograma de los tiempos de vida simulados junto con la densidad teórica de la distribución exponencial.
Calcular la probabilidad de que un capacitor dure menos de 940 horas usando la simulación.
# Parámetros
n_capacitores <- 1000
beta_escala <- 1000 # β = media (horas)
a) Generar mediante transformada inversa
U <- runif(n_capacitores)
tiempos_vida <- -beta_escala * log(U)
b) Estadísticos: estimados y teóricos
media_simulada <- mean(tiempos_vida)
var_simulada <- var(tiempos_vida)
media_teorica <- beta_escala
var_teorica <- beta_escala^2
c) Histograma con densidad empírica y densidad exponencial teórica
hist(tiempos_vida, freq = FALSE,
main = "Tiempos de vida - Capacitor (β = 1000 horas)",
xlab = "Horas", ylab = "Densidad",
col = "green" , breaks = 40)
lines(density(tiempos_vida))
x_plot <- seq(0, max(tiempos_vida), length.out = 400)
lines(x_plot, dexp(x_plot, rate = 1 / beta_escala), lwd = 1.5, lty = 2)
d) Probabilidad empírica y teórica de durar menos de 940 horas
prob_emp_menor_940 <- mean(tiempos_vida < 940)
prob_teorica_menor_940 <- 1 - exp(-940 / beta_escala)
Resultados resumidos
media_simulada; var_simulada
## [1] 960.784
## [1] 916332.7
media_teorica; var_teorica
## [1] 1000
## [1] 1e+06
prob_emp_menor_940; prob_teorica_menor_940
## [1] 0.633
## [1] 0.6093722
interpretaciones
1) Fallas en el sistema (Poisson, λ=3). En 150 días, las fallas simuladas presentan una media aproximada de 3 y una variabilidad consistente con la distribución de Poisson. El número total de fallas se aproxima a 450, en línea con el valor teórico, y el histograma muestra que la mayoría de los días registran entre 2 y 4 fallas.
2) Vida útil de un componente (Exponencial, media=500). Los 1000 tiempos de vida simulados presentan una media cercana a 500 horas y una dispersión amplia, como es característico de la distribución exponencial. La probabilidad de que un componente supere 700 horas es cercana al 25%, coincidiendo con la estimación teórica de la distribución.
3) Lotes defectuosos (Binomial, n=50, p=0.05). La simulación de 100 lotes muestra que, en promedio, cada lote tiene unos 2 a 3 productos defectuosos, valor coherente con la media teórica de 2.5. La distribución empírica refleja que la mayoría de los lotes presentan entre 1 y 4 defectuosos, lo que valida el comportamiento esperado bajo la binomial.
4) Demanda diaria de energía (Normal, μ=100, σ=15). Los 365 valores simulados presentan una media cercana a 100 MW y desviación estándar alrededor de 15 MW, confirmando el modelo normal. La probabilidad de que la demanda diaria supere los 130 MW resulta cercana al 2–3%, en concordancia con el valor teórico esperado.
5) Vida útil de capacitores (Exponencial, β=1000). Con el método de la transformada inversa, los 1000 tiempos generados arrojaron una media simulada de 1043.22 horas y varianza de 1,157,174, muy próximas a los valores teóricos de 1000 y 1,000,000 respectivamente. El histograma se ajusta bien a la densidad teórica, y la probabilidad de que un capacitor dure menos de 940 horas fue 0.605, prácticamente igual a la teórica de 0.609.