Simulación de Variables Aleatorias en R

1. Un sistema de producción tiene fallas según un proceso de Poisson con una tasa de 3 fallas por día.

Simular el número de fallas en un semestre (150 días) y calcular la media y desviación estándar.

#Semilla 
set.seed(2804)

#Parametros a utulizar
lambda <-3 
n <- 150

#Simulacion de las fallas de cada dia
fallas<- rpois(n,lambda)
fallas 
##   [1]  3  1  4  1  2  3  1  6  1 11  2  3  4  3  3  3  3  2  1  6  3  3  3  2  3
##  [26]  1  5  1  3  4  5  1  2  2  4  2  4  3  4  1  3  2  6  4  5  6  2  2  2  8
##  [51]  5  1  1  3  4  2  4  3  4  3  4  3  6  2  5  2  4  2  3  3  2  2  4  4  3
##  [76]  2  4  4  3  1  2  2  6  1  5  1  2  4  5  3  1  1  3  3  3  2  5  2  3  3
## [101]  0  3  0  6  5  3  4  4  4  0  4  3  4  9  3  3  2  4  2  0  1  4  4  3  5
## [126]  6  0  3  4  2  2  5  2  2  4  1  3  2  5  3  2  2  5  0  1  3  3  3  3  1
#Calcular media y deviacion estandar
media<- mean(fallas)
desviacion<- sd(fallas)

#Resultados de la media y desviacion estandar
cat("Media:",media)
## Media: 3.04
cat("Desviacion estandar:",desviacion)
## Desviacion estandar: 1.721869

Interpretacion

Simulando los 150 días, el promedio de fallas por día salió cercano a 3. En otras palabras, la simulación confirma que, en promedio, el sistema presenta unas 3 fallas diarias, con fluctuaciones normales alrededor de ese número.

2. La vida útil (en horas) de un componente electrónico sigue una distribución exponencial con un

promedio de 500 horas. Simular 1000 componentes y estimar la probabilidad de que un componente

dure más de 700 horas.

#Semilla 
set.seed(2804)

#Parametros
media<- 500
rate <- 1/500
n<- 1000

#Simulacion de vida util
vida<- rexp(n,rate)
vida
##    [1]  140.5978447 1187.7294303  311.2542201 1121.5730616  618.9972395
##    [6]   29.9360633 1102.3063724   29.4812047  387.0116318  501.3610254
##   [11]   83.8158149    2.4749157  495.9329003  980.7495540  216.9491834
##   [16]  108.7231354  526.6452413  413.9848837 1333.1626271   74.9612369
##   [21]  263.2098943  345.7838895 1110.4747579  247.8141575  916.6970018
##   [26]  171.2483468  781.3699673  427.6656483  286.5350812  129.8326383
##   [31]  774.8853740   23.6937201  432.3977471  278.3185430   90.4941773
##   [36]  250.2781185  566.7629764  556.5925357  332.3090225  390.3240659
##   [41]  270.8620119  634.5150815  486.7230057  660.4212918  278.7019440
##   [46]  160.9798367  117.2826570  919.5288401  383.9517312  656.6336746
##   [51]   43.4612524 1295.4087341  518.6791681  277.3414506   17.5690537
##   [56]  792.8125327  535.4919443  787.6417815   13.2779405  353.3387040
##   [61]  168.8905179  232.4175446  304.1727562  268.1606109 2995.4672380
##   [66]  289.0931356  582.2219713  441.6405300  235.9193764  665.6413087
##   [71] 1970.2858803 1627.8156549  650.9037511 2140.7190951   81.8595493
##   [76]  192.5195744  359.7815549  623.8340703   85.6125425  301.7171789
##   [81]  972.4049978  480.2130264  431.8981525 2810.2665127  120.3828142
##   [86]   40.7957705   19.1201095 1114.2659997  187.6084874  129.1996460
##   [91]  543.0848147   50.5238089  418.3257563  379.6555693  162.8576828
##   [96] 1118.0931245  539.6659788  539.7206316  537.4135626  209.4109140
##  [101]  226.9635717  866.9469207  900.8000325    4.3437345   48.4206085
##  [106]  328.0459044  962.6502096  422.9523386  165.4557358   22.6298633
##  [111] 1832.9223719  884.4259064  268.8314083   68.8930633 1523.2736393
##  [116]  453.2431499  718.7136570  324.3817198  121.8617912  174.4653343
##  [121]  942.0074690  846.8631776  524.9660336  315.5198593  978.1303324
##  [126]  131.5977548 1323.2890544  470.8318151  220.8848502  485.2481922
##  [131]  848.1996096  891.4892831  441.3401331  617.1205267  174.6213343
##  [136]  622.8408743  120.8798748 1316.5048779  331.4577001  550.0116460
##  [141]  172.9067268  480.9935074  319.6144253  627.5809440  109.0201780
##  [146]  366.9992297  715.9007834 1374.5185928    2.7321922   98.4030736
##  [151]  625.6357734 2049.1343913   60.6117149  524.1079088  157.1801237
##  [156]  347.8252888  517.5998761   15.6533390  125.4758330  661.2669546
##  [161]  149.4007830  247.6547710  214.9401746  462.5727957  799.7173290
##  [166]  142.9470284  257.9392570  734.2039336  437.5269756  292.1172520
##  [171]  423.6836517  896.1234605  162.1566119  317.9271694  220.6640245
##  [176]  168.2625797 1142.1305658  238.1449770  125.9257502  392.7819282
##  [181]  469.9543337  223.8476277  120.3797638   22.7731231  221.2456364
##  [186]  267.7512250 2065.5882758 1311.4791074  553.4364851   31.7982487
##  [191]   81.6494397  989.6919718  328.2766698  161.9579595 1088.5138962
##  [196]   20.8581179  369.8631297  107.6987275 1219.1740507  757.8010857
##  [201]  353.3255746  275.4378305  258.3928938  137.1999395  125.1183962
##  [206]  648.0353758   59.4686458   61.4823679  969.2003943  435.1175975
##  [211]  194.3935070  884.7584864  177.4783018   76.8074554  559.1533091
##  [216]  206.5851260  499.2478438   63.6136276 1376.8703052  279.4149786
##  [221]   68.2120968 1367.4492603  367.9910611  143.1782944    4.1076199
##  [226]  522.7389154  374.0690796  261.0894486  393.3668639 2438.6686318
##  [231] 2497.1558259   20.8386504  616.8979457  335.7612547 1162.3369335
##  [236]  132.2359528  139.7202068  788.3677211   82.9628527  293.4533022
##  [241]    0.4051576  650.6558987  382.4087661   58.3491051  463.3758468
##  [246]   49.8204606  165.1219965  119.1650534  750.4301574  444.7677058
##  [251]  615.9562589  365.1734666   36.0767767  126.8428746   40.5572858
##  [256]  156.5298145    2.8556390  227.0560537  671.2705791 1599.3676371
##  [261]  115.4485901  566.0417848  718.8575098  359.9944021  651.4416300
##  [266]  243.5037231  142.6223542   63.8889886   23.0038483   52.9184218
##  [271]  732.6834034  336.9774907  489.6318561  629.6562259 1522.7193559
##  [276]  598.6062949 1479.9630567  606.6023703  512.0507963 1419.5154019
##  [281]  639.2200747  241.1614079   72.8144471  169.7526532  770.8184896
##  [286]  349.8073366   10.8407964  540.2666768  769.2834819    8.3569377
##  [291]  234.0320945  151.6340027  105.4599071   32.8766324  179.6743564
##  [296]  574.6570886  633.3007086 2519.4571548  195.7796542  632.5656099
##  [301]  807.9742289  515.3600594 1042.3524165  579.5008489  949.3265654
##  [306]  435.4050546  376.4996017  236.0885784  282.6312992  451.3902813
##  [311]  281.1004175  275.6337967   86.5283071  121.7787827 1418.0181006
##  [316] 1089.2017008   76.5527938  244.2487129 1231.3965456  641.9101407
##  [321]  676.0490041  740.6005311   35.1233967 2594.2072802  213.4361733
##  [326]    6.3568894  295.5704352  529.9124010  905.5530986   49.7008132
##  [331]  179.5762444   79.9018775  120.6027521   30.1801478  816.5149130
##  [336] 1147.4472386 1463.9151550  129.4377617  243.2728279  359.9425406
##  [341]  715.1543049   10.0143351  380.0410950   80.4418502 1099.6579890
##  [346]   69.0064752  964.1612153 1196.8255964  484.0098315   80.4031823
##  [351]   66.7397056  612.9429559   28.5991934   53.7966623  320.6421649
##  [356]  376.4734977  131.7697154  302.8519058  585.9856326  136.3487018
##  [361]  542.2959090  177.3478917  493.1034009  564.7729500  124.7785136
##  [366]  264.0875676   15.0065999  250.8184437  245.3105072  697.9518635
##  [371]  312.2580256  353.1885459  800.6526939  216.9029389  175.2254805
##  [376] 1282.5198178  261.0692927   80.4483180   79.6119550  810.3344997
##  [381]  165.2393450  139.8599484  145.2561894   55.6030543   19.9766017
##  [386]  342.8323958  302.4142189  887.9039911   53.4652062  483.4641669
##  [391]  884.1174335   96.7967707  612.8566437  459.6061646  367.1470461
##  [396]   59.7136707    9.0912567  121.2453826  472.5044900  843.4746147
##  [401]  228.8896814 1523.4924630  280.3815985  548.7680415  530.9955483
##  [406]  290.0087570  192.0822576   91.4501588  716.6814271  212.4014227
##  [411]  431.8046062   43.1302444    8.9241773  270.5748542  793.4769895
##  [416]  363.6215497  115.6167849  614.1240857 1410.5872697  152.1579213
##  [421]  862.8902211  661.5487183  727.2440316  106.6097715  327.1160722
##  [426]  803.6454171   82.2377350  167.0085806 1284.0246138  995.6254726
##  [431]  674.3469904  367.0884557   18.9321238  554.3407262   72.2601737
##  [436]  802.1858111  451.4381159   76.1819363  525.1110937 1315.0531323
##  [441]  513.4554137   38.6373093  434.1087811  140.3589253   53.0629587
##  [446]   89.1022671  828.3604551  252.2917574  189.7186991   91.6472748
##  [451] 1069.7163538 2070.9475753 1045.5115726   51.6983689  568.3666747
##  [456]  489.6026114  198.3747375 1352.9659909 1311.1806316  977.4161959
##  [461] 1393.9658961   16.6849177  366.4219929  119.0221377  471.0159451
##  [466] 1255.7223142 1873.5010308  327.4559656  397.1251044  125.7678561
##  [471]   51.3734240  185.5576093  691.6314149  499.5633531  150.3538536
##  [476]  892.0717490  167.8027082 1005.9145847   64.2275740  320.9163423
##  [481]  975.1732312 1052.7077753 1770.8931964 1470.2244837  468.2617334
##  [486] 1051.8996728  399.3778163  828.0869907   50.7910121 1027.0575722
##  [491] 1413.7093871  118.0040683  622.2813776  964.6961269  479.3454874
##  [496]   73.0136779   23.4558890  383.2643031  192.1126249 1063.9751579
##  [501]  405.1327547  733.8281786  295.8790392  912.4080147  673.9573059
##  [506]  252.3204177  246.4259348  995.1318111 1057.8969633   12.6404858
##  [511]  700.5325902  443.9261338  113.3580359  359.5724780  108.2244607
##  [516]  280.3000561   64.6102496  387.7284336   85.1266991  182.8980683
##  [521]  583.3916329  433.7752922   27.5509641  934.1231091  552.1709658
##  [526]  205.6385029  663.7830860  148.2235394  767.0438084 2371.1202535
##  [531]   11.2529248 1308.2802286  528.6609679  120.0780824  666.3436242
##  [536]  129.6914715  225.9187135  236.7361079  649.5458497  357.7237527
##  [541]  133.8673227  511.2606450  106.2994241  172.8026681  360.9698451
##  [546] 1532.8977927  270.2627943  520.6970176  181.6157030  415.6800275
##  [551] 1052.3045575  683.1503436  335.6639000  456.2084134 1583.9277915
##  [556]  534.0979274  300.3933693 1320.0919804  211.8841710  155.7502802
##  [561]  458.3063326  766.3037772  511.7039266  334.2570858   26.8986664
##  [566]  414.7260664  109.2354139  279.5425234    6.0390106  883.0914851
##  [571]  616.9872209  102.0630901  549.3511082  590.6324247 1148.6684521
##  [576]  297.3017788  243.3332601   20.1355595  369.2818632    3.5295172
##  [581]  379.9416502  600.9240923  442.7820616   48.8306372  300.6436040
##  [586]   57.7379678  967.9300692   79.1743153  661.6839203   78.8756127
##  [591] 1028.3667091  231.0654882  594.0213199   16.8006702  176.7329315
##  [596]  401.2128119  136.8496866  345.2400097   10.2857018 1320.7881646
##  [601]  227.3585107  139.7131023  535.8494492  454.2391092   17.9992465
##  [606]  467.2009484  858.1848787   30.2217572  299.9940424  611.9032590
##  [611]   63.7866685  377.9045935  696.3620865  402.3445109   83.1569371
##  [616]  225.1096320  120.7256166  498.1163523  495.4625670  418.4823953
##  [621]  333.4201421   57.2725749  609.9850549  620.4724265 2093.2265951
##  [626]  152.7763986  633.6070341 2051.3696474  742.8496908  659.2215723
##  [631] 1390.0439033  521.6030064  631.0329470  194.8660256  336.0214035
##  [636]  538.4011999 1072.2668792  519.4831486  479.9513505  446.8202819
##  [641]  497.6115287  251.0416824  343.4446198  477.3174249  656.3851833
##  [646]  202.3703535   73.0906522 1174.0397764   68.1858857  254.0622549
##  [651] 1108.5651925  696.1101079  561.6106802  618.6451353   79.4121395
##  [656]  637.3078692 2062.6554442  393.6866731 1431.3970803  581.9780016
##  [661] 2624.8292856 1778.4640472  817.8868644  294.7600142   28.6362139
##  [666] 1849.4036448  271.5586261  339.0135318  198.1024090   28.1949483
##  [671]  991.3513129   91.8490195  248.8927038  435.0423449  850.3493387
##  [676]  469.3445060  385.4813415  432.9900396  362.3782970   59.1838866
##  [681]  902.4004712  823.7604778  502.5219396  948.4291058  221.2547415
##  [686]  142.3276695   60.9522790    8.1810951  710.6940003  763.8971945
##  [691] 1256.3217757  697.2524859  257.8927716  242.0725904   20.3248857
##  [696]  857.9959741  820.5995522  670.2060415   60.9428295   57.8218154
##  [701] 1057.4988731   85.0952816  603.8883230  233.5666818  651.6847443
##  [706]  131.3374753  851.7902391  249.1088964  100.6457230  407.9551831
##  [711]  500.8961893   11.5931071   64.4404124 1580.5793702   74.4592114
##  [716]  502.6023434  410.6421377  567.8242366  423.0209966 1215.5098263
##  [721]  430.3871724   69.0819578  702.9866201  147.7739203  211.6783424
##  [726]   79.0994922   12.4669215  275.3071129  196.2767793  934.0186650
##  [731] 1120.5556364  179.5299845  959.1395957   12.1200415  183.4256456
##  [736]  791.5799953  140.1577877   64.0545788 1306.7763438 1819.0577728
##  [741]   12.5603771  249.1679606 1254.9046818  402.2681952  950.9883076
##  [746]  735.6823124 1496.8059137   63.8349236  601.8510298  540.5755424
##  [751]  330.1305226  397.3945062  373.2472145  179.8452914 1165.2075202
##  [756]  448.8078629  431.2190069  435.6682548  521.8233620  999.0670485
##  [761]  265.2171878   72.8871170  260.5846863  403.2649169  748.9828020
##  [766]  844.5804352  123.3809354  126.8487656  696.4437667   42.1752279
##  [771]  975.2985593  498.5417444  264.1162511  543.7701662   39.2990666
##  [776] 1453.9043604   85.1260393  571.7663718  354.3503642  287.7982589
##  [781]   40.9958458  122.9683820  162.5913759  669.7781854  115.3858495
##  [786]  468.3641074   36.5855470  816.6340958   62.6500765   41.5539869
##  [791]    6.5317062   16.7895968  301.2333917 1435.4468695   11.7023201
##  [796]  191.8920942  673.1069200 1053.3124549  280.7612824  359.4631040
##  [801] 1200.3147374 1495.6185929  613.2304310   22.4479297 1443.9807835
##  [806]  137.3098564  325.0072801  585.0123274  245.5740923  384.0436116
##  [811]  194.2828337  373.2573003  469.5638316  763.9077208   82.1688103
##  [816]  156.6565879 1066.1588152   47.1186456  424.5858857 3143.2265427
##  [821] 3359.1419771 1963.8424468  387.8274811   63.0453200  563.4325593
##  [826]  116.3927896  721.4821921  682.6654468 1044.9734097  272.4767448
##  [831]   71.6608525  559.4070004  889.8204928  410.4901375  481.5320833
##  [836]  220.9507956 1237.8654191  444.6593367  560.0362213  667.9488318
##  [841]   46.8860199   71.1079410  382.5890953  321.5056648 1206.1137901
##  [846]  182.3130297  121.2752289 1004.9248375  446.0020464  953.1570002
##  [851]  107.9498883  504.3226304 1198.1515353    9.3678508   70.0726607
##  [856]  232.5031229  315.0586435  397.5060470  232.2836495  432.0114045
##  [861]  304.6068030  262.1230385 1007.4058491  171.7539833  295.7598565
##  [866]  729.8778123  342.7802166   22.7921939   12.1683389  503.2351315
##  [871]   36.2243871  383.5230293 1982.5185415   17.2896230  228.5793691
##  [876]  193.1409542  379.9207401   13.4362297  198.8767469  737.3580141
##  [881]  369.1597944  202.3051983   37.2165549  571.3845854  149.9599340
##  [886]  572.7037019  322.0022458  614.1265086  341.7368163  136.6540994
##  [891]  110.6062899  559.7746963  688.4847749  635.6226420 1209.7125267
##  [896]  276.0131375  157.0392726  873.5353094  210.1662045   81.0931816
##  [901] 1225.3690851  852.7309733   19.0460951  188.3403566  523.1434321
##  [906]  204.5219082  116.8407679  547.5039840 1226.9946364  803.4934345
##  [911] 1218.6504238  456.9011479 1280.6510561  324.5179853  371.1595567
##  [916]  714.0749978   38.3275375 1267.3450251 1152.1325847  632.3187076
##  [921]  151.9070973 2095.1788895  340.6229208  129.0899674  195.7533378
##  [926]  143.2698413 2212.5030252  294.6434070  632.7802632  330.0424337
##  [931]  384.7679687  613.2273692  150.7207885  703.2162604  168.1004164
##  [936]  231.9299640  316.6988583  196.6175617 1676.3289421  870.5910472
##  [941]  185.8150985  316.0562909   79.9723174    1.4650785    0.6872180
##  [946]  598.3485044  377.5976491    7.7786550   62.7439651  246.6373001
##  [951]  101.0105367  578.2812209  440.6502358  171.6629382  251.6983575
##  [956]  183.3414868   71.4580768   38.9506306  326.7785558  566.8909172
##  [961]  831.3778769  195.2685821   23.3896668  982.7288333  212.5155269
##  [966]  655.7513033  103.6264113  516.1368856  219.7991435  443.9463249
##  [971]  477.3956570   35.4241197  588.6073064 2106.3412818  590.9288008
##  [976]   75.3141032  429.8724639  145.6191768  111.7918838  214.7592050
##  [981]  699.6441684 1299.9215358  536.7430355  559.3471308  247.1216170
##  [986]  279.3966073   68.0217488  215.7449801  229.1722693  156.5221103
##  [991]  593.0326180  377.6334845   67.7617337  520.3927932   48.5319893
##  [996]  772.0084143  489.0971131  336.1062822  923.2729170  254.1888468
#Probabilidad que dure mas de 700 horas
probabilidad <- mean(vida>700)

#Resultados
cat("Probabilidad que un componente dure mas de 700 horas:",probabilidad)
## Probabilidad que un componente dure mas de 700 horas: 0.23

Interpretacion

Simulando la vida útil de los 1000 componentes, vimos que solo una parte pequeña supera las 700 horas. Esto tiene sentido porque el promedio es de 500 horas, así que llegar a 700 ya es bastante más arriba de lo esperado.

3. En una línea de ensamblaje, la probabilidad de que un producto sea defectuoso es del 5 %. Simular

100 lotes de 50 productos y calcular el número promedio de productos defectuosos por lote.

#Semilla 
set.seed(2804)

#Parametros
n_Producto<- 50
p_defectuoso<- 0.05
n_lotes <- 100

#Simulacion de cantidad de productos defectuosos por lote
defectuosos<- rbinom(n_lotes,n_Producto,p_defectuoso)

defectuosos
##   [1] 3 1 4 0 2 2 0 5 1 9 1 2 3 2 3 3 2 2 1 5 3 3 3 2 2 1 5 1 3 4 4 1 2 1 3 1 3
##  [38] 3 3 1 2 1 5 4 4 5 2 1 1 7 5 1 0 2 3 1 4 3 3 2 3 3 5 2 4 1 4 2 2 3 2 2 4 3
##  [75] 3 1 3 3 2 1 2 2 6 1 4 1 2 4 4 2 0 1 2 3 3 1 5 1 2 2
#Promedio de productos defectusos por lote
Promedio_defec<- mean(defectuosos)

#Resultados 
cat("Promedio de productos defectuosos por lote:",Promedio_defec)
## Promedio de productos defectuosos por lote: 2.57

Interpretacion

Simulando los 100 lotes encontramos que, en promedio, hay unos 2 a 3 productos defectuosos por cada lote de 50. Esto coincide con lo esperado, ya que con una probabilidad de 5 % lo normal es que alrededor de 2.5 productos salgan defectuosos por lote.

4. La demanda diaria de energía (en MW) sigue una distribución normal con media de 100 MW y

desviación estándar de 15 MW. Simular la demanda de un año (365 días) y calcular la probabilidad

de que un día supere los 130 MW. y realizar el histograma.

#Semilla 
set.seed(2804)

#Parametros
media<- 100
desviacion<- 15
n<- 365

#Simulacion de demanda diaria de energia (en MW)
demanda<- rnorm(n,media,desviacion)
demanda
##   [1] 105.40086 113.23791  95.66191  77.89918  79.42319  90.81774 108.19144
##   [8] 104.68368 100.09306  87.20884 105.15260 104.13989  98.31963 120.35978
##  [15] 102.83529 115.27776  96.79373 110.01441 106.11160 106.65044  99.08566
##  [22] 124.03312 118.88051  95.20529  89.20410 119.95129  77.67888 110.19558
##  [29] 111.49790 110.13048 107.25186 125.24979 114.44995 111.12533  98.39135
##  [36]  96.36983 111.51725 104.47528 105.90959  99.06830  93.55826 127.36248
##  [43] 114.06115  93.65110 115.85012  75.42752  97.58562 102.19470 119.54433
##  [50] 100.49934  69.04352  73.64725 116.41778 109.30212 110.99204 112.04918
##  [57] 107.01286  98.15856  91.00234  96.56884  75.98629 107.73186 117.48395
##  [64]  64.37215 107.54507  95.75664  89.74181 112.71656  99.32174 119.18918
##  [71]  89.70230 114.18205  81.49915 104.59730 100.71918 107.33624  95.13296
##  [78]  94.14949  99.90240  87.74861 104.23418 116.51919  98.86748  99.07519
##  [85] 102.15609  94.03427 109.05483  86.09211 103.53228 101.82508  86.96238
##  [92] 106.41099  68.79638 111.02506  73.70678  83.20245 104.65561  86.67692
##  [99]  93.78013  88.92636 118.28787  80.59984 118.52154 105.27032  96.20485
## [106]  85.31337  92.02088 123.00733 107.29998 104.61689 114.39912 120.23916
## [113] 113.04548 113.70845 104.15149  76.54347 109.77034  83.15286 100.10273
## [120]  95.79188 116.79885 102.81586 106.07169  98.57775  99.75475 104.79842
## [127] 105.75555 117.34439 109.52750 107.22980  93.59555  92.45561 105.49521
## [134]  88.37653  82.25955  90.46220 112.20684  88.54297  86.02440 113.61241
## [141] 109.40779 106.52681 109.56455 131.36991  90.94823 125.08761 117.47488
## [148] 109.46030 120.34352 114.05613 105.31198 110.97192  80.47102 136.16810
## [155] 118.51556 124.61412  96.92716 114.21066  98.76957  81.50971  83.84816
## [162] 110.86760  90.42576  92.59424  79.41035  90.04145 116.02068 110.53163
## [169]  99.73436  96.03943  96.22816 121.08774  86.12025 113.80447  98.40710
## [176]  90.14003  85.85866 102.90599 108.15154 115.41783  86.47123 111.55328
## [183]  81.06931  76.90216 105.50451  93.73448  88.52630  87.93353  90.96142
## [190]  63.58264 119.18125 100.78388 114.65778 105.49564 118.30241  97.87179
## [197] 132.18319  88.78794  91.02229 112.27693 115.31935  96.27899 123.08726
## [204]  85.59000 101.87812 104.54933  99.90453  91.40527 108.19015  97.75206
## [211]  75.84574  81.12168 104.85255 106.04516  64.02813 109.05900  74.50026
## [218]  94.61246 106.18603  90.19719 109.81278  96.64549 117.57704  86.51603
## [225] 101.99557 114.73167 105.45526  95.87044  95.96573 119.43926  73.22012
## [232]  93.51455  80.41700  96.05687 115.78116  87.90879  84.08981  75.27138
## [239] 104.08278 120.04548  94.67945  94.09228  91.98189  89.49963 109.37581
## [246]  97.64122 104.01258 126.38264 100.69323  95.94155 107.68451 126.85987
## [253]  89.85442 126.87628  93.45597  99.71036  77.02823  86.77868  98.66183
## [260] 115.99890 107.06618 123.51082  92.23770 117.94488 121.04886 123.30159
## [267]  89.86697 104.65234 128.43098  77.71517 109.84750  98.91375 115.68621
## [274] 131.05556  88.03680 101.29222  61.58668 100.23903  93.88133 112.71647
## [281] 128.82146  90.19319 106.99771 116.73757 104.60596 105.23877  84.82457
## [288]  76.19304 100.54638  95.16018 111.78651 124.54674  97.48557  73.48793
## [295] 108.84305 116.09274  96.34840  80.47953  99.72570  77.86226  86.98309
## [302]  98.14910  96.06597 106.08502 102.52120 133.86862 105.95125 102.02889
## [309]  97.25203  96.79025  95.42594 100.69507 112.77778 105.23074 106.90443
## [316]  97.07880 134.20792  94.58700 110.79270 110.15601  88.42114  66.98304
## [323]  90.03823 108.60498  82.73106 117.26239 107.89061 103.04561  89.13250
## [330]  93.73646 133.78409  99.12645 121.86402 115.67506  96.93785  85.11002
## [337] 104.21511 115.09251  85.90470  97.89581 106.75518 121.63175 101.92372
## [344] 110.36826  95.54140  93.24117 109.63298  97.59370 126.57933 102.00147
## [351]  91.99038 147.46293 104.63130  88.05724  97.49760  75.83904 113.46876
## [358]  98.12225 107.75827 103.64008 112.09677 102.04542 115.70774  93.17482
## [365] 105.79858
#Probabilidad que supere los 130 MW
probabilidad <- mean(demanda>130)

#Resultados
cat("Probabilidad de que un dia supere los 130MW:",probabilidad)
## Probabilidad de que un dia supere los 130MW: 0.02191781
#Histograma
hist(demanda,main="Histograma de la demanda diaria",col="blue",xlab="Demanda (MW)")

Interpretacion

Simulando la demanda de energía durante un año, encontramos que la probabilidad de que en un día se superen los 130 MW es bastante baja (en este caso de un 2 %). La grafica muestra de una forma aproximadamente normal centrada en 100 MW, que coincide con lo planteado.

5. Una empresa de manufactura electrónica quiere simular el tiempo de vida (en horas) de un nuevo

modelo de capacitor. Basado en datos históricos, se ha determinado que el tiempo de vida sigue una

distribución exponencial con parámetro β = 1000 horas, que representa el tiempo medio de vida de

los capacitores.

a) Generar 1000 tiempos de vida del capacitor aplicando el método de la transformada inversa.
b) Estimar la media y la varianza de los tiempos generados y compararlas con los valores teóricos.
c) Graficar el histograma de los tiempos de vida simulados junto con la densidad teórica de la
distribución exponencial.
d) Calcular la probabilidad de que un capacitor dure menos de 940 horas usando la simulación.
#Semilla
set.seed(2804)

#Parametros
beta<-1000
lambda<- 1/beta
n <-1000

# a) Generar 1000 tiempos de vida transformada inversa
uniformes <- runif(n)
tiempo_vida <- -beta*log(1-uniformes) 
#Se transforma a la inversa y esto equivale a -beta*log(uniformes)

# b) Estimar la media y varianza y compararlas con los valores teoricos

media <- mean(tiempo_vida)
varianza <- var(tiempo_vida)

# Valores teoricos

media_teorica <- beta
varianza_teorica <- beta^2

cat("Media:",media)
## Media: 1006.545
cat("Media teorica:",media_teorica)
## Media teorica: 1000
cat("Varianza",varianza)
## Varianza 1079669
cat("Varianza teorica", varianza_teorica)
## Varianza teorica 1e+06
# c) Histograma
hist(tiempo_vida,probability=TRUE,main="Tiempo de vida",col="yellow",xlab="Horas")
#Densidad teorica
curve(dexp(x,lambda),from = 0,to= max(tiempo_vida),add = TRUE)

# d) Probabilidad de durar menos de 940 horas
probabilidad<- mean(tiempo_vida<940)

cat("Probabilidad de durar menos de 940 horas:",probabilidad)
## Probabilidad de durar menos de 940 horas: 0.611

Interpretacion

Simulando los tiempos de vida de los capacitores encontramos que se acercan bastante al valor esperado de 1000 horas y la varianza también coincide con la teórica. La grafica nos muestra bien la forma de la distribución exponencial, y cuando calculamos la probabilidad de durar menos de 940 horas encontramos que es un poco más del 60 %. En general, los resultados de la simulación confirman lo que predice la teoría.