knitr::opts_chunk$set(echo = TRUE)
library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
setwd("~/Desktop/my class stuff/Wednesday Class")
district <- read_excel("district.xls")
# Step 2: Create a new data frame
special_ed <- district %>%
select(DISTNAME, DPETSPEP, DPFPASPEP)
# %>% = (Pipe)and then take that
head(special_ed)
## # A tibble: 6 × 3
## DISTNAME DPETSPEP DPFPASPEP
## <chr> <dbl> <dbl>
## 1 CAYUGA ISD 14.6 28.9
## 2 ELKHART ISD 12.1 8.8
## 3 FRANKSTON ISD 13.1 8.4
## 4 NECHES ISD 10.5 10.1
## 5 PALESTINE ISD 13.5 6.1
## 6 WESTWOOD ISD 14.5 9.4
okay purrrrrrr not me eating up that last chunk, it all ran perfectly (its very simple code and I am being dramatic)
# summary for DPETSPEP
summary(special_ed$DPETSPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.90 12.10 12.27 14.20 51.70
# summary for DPFPASPEP
summary(special_ed$DPFPASPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.800 8.900 9.711 12.500 49.000 5
Which variable has missing values? DPFPASPEP is missing 5 Values, so its the variable missing values.
# letssss goooooo point graphhhhhhhh
names(district)
## [1] "DISTNAME" "DISTRICT" "DZCNTYNM" "REGION"
## [5] "DZRATING" "DZCAMPUS" "DPETALLC" "DPETBLAP"
## [9] "DPETHISP" "DPETWHIP" "DPETINDP" "DPETASIP"
## [13] "DPETPCIP" "DPETTWOP" "DPETECOP" "DPETLEPP"
## [17] "DPETSPEP" "DPETBILP" "DPETVOCP" "DPETGIFP"
## [21] "DA0AT21R" "DA0912DR21R" "DAGC4X21R" "DAGC5X20R"
## [25] "DAGC6X19R" "DA0GR21N" "DA0GS21N" "DDA00A001S22R"
## [29] "DDA00A001222R" "DDA00A001322R" "DDA00AR01S22R" "DDA00AR01222R"
## [33] "DDA00AR01322R" "DDA00AM01S22R" "DDA00AM01222R" "DDA00AM01322R"
## [37] "DDA00AC01S22R" "DDA00AC01222R" "DDA00AC01322R" "DDA00AS01S22R"
## [41] "DDA00AS01222R" "DDA00AS01322R" "DDB00A001S22R" "DDB00A001222R"
## [45] "DDB00A001322R" "DDH00A001S22R" "DDH00A001222R" "DDH00A001322R"
## [49] "DDW00A001S22R" "DDW00A001222R" "DDW00A001322R" "DDI00A001S22R"
## [53] "DDI00A001222R" "DDI00A001322R" "DD300A001S22R" "DD300A001222R"
## [57] "DD300A001322R" "DD400A001S22R" "DD400A001222R" "DD400A001322R"
## [61] "DD200A001S22R" "DD200A001222R" "DD200A001322R" "DDE00A001S22R"
## [65] "DDE00A001222R" "DDE00A001322R" "DA0CT21R" "DA0CC21R"
## [69] "DA0CSA21R" "DA0CAA21R" "DPSATOFC" "DPSTTOFC"
## [73] "DPSCTOFP" "DPSSTOFP" "DPSUTOFP" "DPSTTOFP"
## [77] "DPSETOFP" "DPSXTOFP" "DPSCTOSA" "DPSSTOSA"
## [81] "DPSUTOSA" "DPSTTOSA" "DPSAMIFP" "DPSAKIDR"
## [85] "DPSTKIDR" "DPST05FP" "DPSTEXPA" "DPSTADFP"
## [89] "DPSTURNR" "DPSTBLFP" "DPSTHIFP" "DPSTWHFP"
## [93] "DPSTINFP" "DPSTASFP" "DPSTPIFP" "DPSTTWFP"
## [97] "DPSTREFP" "DPSTSPFP" "DPSTCOFP" "DPSTBIFP"
## [101] "DPSTVOFP" "DPSTGOFP" "DPFVTOTK" "DPFTADPR"
## [105] "DPFRAALLT" "DPFRAALLK" "DPFRAOPRT" "DPFRASTAP"
## [109] "DZRVLOCP" "DPFRAFEDP" "DPFRAORVT" "DPFUNAB1T"
## [113] "DPFUNA4T" "DPFEAALLT" "DPFEAOPFT" "DPFEAOPFK"
## [117] "DPFEAINSP" "DZEXADMP" "DZEXADSP" "DZEXPLAP"
## [121] "DZEXOTHP" "DPFEAINST" "DPFEAINSK" "DPFPAREGP"
## [125] "DPFPASPEP" "DPFPACOMP" "DPFPABILP" "DPFPAVOCP"
## [129] "DPFPAGIFP" "DPFPAATHP" "DPFPAHSAP" "DPFPREKP"
## [133] "DPFPAOTHP" "DISTSIZE" "COMMTYPE" "PROPWLTH"
## [137] "TAXRATE"
ggplot(special_ed_clean, aes(x = DPETSPEP, y = DPFPASPEP)) +
geom_point() +
labs(
x = "Percent Special Education (DPETSPEP)",
y = "Money Spent on Special Education (DPFPASPEP)",
title = "Special Education % vs. Spending"
)
#ggplot(special_ed_clean, aes(x = DPETSPEP, y = DPFPASPEP)) → tells ggplot which data frame to use
#geom_point() → makes a scatterplot
#labs() → adds axis labels and a title.
cor(special_ed_clean$DPETSPEP, special_ed_clean$DPFPASPEP)
## [1] 0.3700234
# Correlation is 0.3700234 so I would In general, districts with a higher percentage of special education students tend to dedicate a larger share of their budget to special education. However, the connection is not very strong (its a lot closer to zero then 1), since some districts spend more or less than expected. This explains why the points on the graph do not form a perfect straight line. So I would say its like a weak correlation.