Similarity Ratings Analyses

Libraries and Data Files

#load libraries
library(dplyr)
library(ggplot2)
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.3.2
library(ez)
library(sciplot)
library(gplots)
library(car)
library(afex)
## Warning: package 'afex' was built under R version 4.3.3
library(emmeans)

#load data
data<-read.csv("AllData_SimilarityRatings.csv", header = T)

Data Pre-processing

#rename useful variables
data$sbj<-data$participant
data$resp<-data$slider_exp.response
data$block<-data$blocks.thisN +1

data <- mutate_if(data, is.character, as.factor)
data$sbj<-as.factor(data$sbj)
str(data)
## 'data.frame':    9648 obs. of  38 variables:
##  $ trl                       : int  20 12 17 14 21 3 10 13 6 23 ...
##  $ cnd                       : Factor w/ 2 levels "between","within": 2 2 2 2 1 2 2 2 2 1 ...
##  $ dim                       : Factor w/ 2 levels "irrel","rel": 2 1 2 2 2 1 1 2 1 2 ...
##  $ size1                     : num  3.4 2.6 2.2 2.6 2.2 2.2 2.6 2.2 3 3 ...
##  $ hue1                      : num  0.1 0.3 0.1 -0.3 -0.1 0.1 -0.1 -0.3 -0.1 -0.1 ...
##  $ size2                     : num  3.4 3 2.2 2.6 2.2 2.6 3 2.2 3.4 3 ...
##  $ hue2                      : num  0.3 0.3 0.3 -0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 ...
##  $ practice_trials.thisRepN  : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisTrialN: logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisN     : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisIndex : logi  NA NA NA NA NA NA ...
##  $ blocks.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisTrialN         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisN              : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisIndex          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisTrialN         : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisN              : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisIndex          : int  19 11 16 13 20 2 9 12 5 22 ...
##  $ break_loop.thisRepN       : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisTrialN     : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisN          : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisIndex      : logi  NA NA NA NA NA NA ...
##  $ thisRow.t                 : num  68.9 73.1 75.9 79.7 82.8 ...
##  $ notes                     : logi  NA NA NA NA NA NA ...
##  $ slider_exp.response       : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ slider_exp.rt             : num  3.89 2.6 3.45 2.87 4.87 ...
##  $ participant               : int  17202 17202 17202 17202 17202 17202 17202 17202 17202 17202 ...
##  $ session                   : Factor w/ 2 levels "Post","Pre": 1 1 1 1 1 1 1 1 1 1 ...
##  $ group                     : Factor w/ 4 levels "1100","1600",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ date                      : Factor w/ 134 levels "2025-02-25_11h40.18.454",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ expName                   : Factor w/ 1 level "SimilarityRatings": 1 1 1 1 1 1 1 1 1 1 ...
##  $ psychopyVersion           : Factor w/ 1 level "2023.2.3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ frameRate                 : num  60 60 60 60 60 ...
##  $ expStart                  : Factor w/ 134 levels "2025-02-25 11h48.02.736634 +0200",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ sbj                       : Factor w/ 67 levels "341","1003","1206",..: 10 10 10 10 10 10 10 10 10 10 ...
##  $ resp                      : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ block                     : num  1 1 1 1 1 1 1 1 1 1 ...
#re-order the levels of the session factor
data$session <- factor(data$session, levels = c("Pre", "Post"))

#exclude one participant (20335) for not following instructions
data<-droplevels(data[data$sbj!="20335",])
str(data)
## 'data.frame':    9504 obs. of  38 variables:
##  $ trl                       : int  20 12 17 14 21 3 10 13 6 23 ...
##  $ cnd                       : Factor w/ 2 levels "between","within": 2 2 2 2 1 2 2 2 2 1 ...
##  $ dim                       : Factor w/ 2 levels "irrel","rel": 2 1 2 2 2 1 1 2 1 2 ...
##  $ size1                     : num  3.4 2.6 2.2 2.6 2.2 2.2 2.6 2.2 3 3 ...
##  $ hue1                      : num  0.1 0.3 0.1 -0.3 -0.1 0.1 -0.1 -0.3 -0.1 -0.1 ...
##  $ size2                     : num  3.4 3 2.2 2.6 2.2 2.6 3 2.2 3.4 3 ...
##  $ hue2                      : num  0.3 0.3 0.3 -0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 ...
##  $ practice_trials.thisRepN  : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisTrialN: logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisN     : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisIndex : logi  NA NA NA NA NA NA ...
##  $ blocks.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisTrialN         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisN              : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisIndex          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisTrialN         : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisN              : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisIndex          : int  19 11 16 13 20 2 9 12 5 22 ...
##  $ break_loop.thisRepN       : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisTrialN     : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisN          : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisIndex      : logi  NA NA NA NA NA NA ...
##  $ thisRow.t                 : num  68.9 73.1 75.9 79.7 82.8 ...
##  $ notes                     : logi  NA NA NA NA NA NA ...
##  $ slider_exp.response       : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ slider_exp.rt             : num  3.89 2.6 3.45 2.87 4.87 ...
##  $ participant               : int  17202 17202 17202 17202 17202 17202 17202 17202 17202 17202 ...
##  $ session                   : Factor w/ 2 levels "Pre","Post": 2 2 2 2 2 2 2 2 2 2 ...
##  $ group                     : Factor w/ 4 levels "1100","1600",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ date                      : Factor w/ 132 levels "2025-02-25_11h40.18.454",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ expName                   : Factor w/ 1 level "SimilarityRatings": 1 1 1 1 1 1 1 1 1 1 ...
##  $ psychopyVersion           : Factor w/ 1 level "2023.2.3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ frameRate                 : num  60 60 60 60 60 ...
##  $ expStart                  : Factor w/ 132 levels "2025-02-25 11h48.02.736634 +0200",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ sbj                       : Factor w/ 66 levels "341","1003","1206",..: 10 10 10 10 10 10 10 10 10 10 ...
##  $ resp                      : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ block                     : num  1 1 1 1 1 1 1 1 1 1 ...
#exclude five participants for not meeting the learning criterion: 
data <- droplevels(  data[!(data$sbj %in% c("77623", "77337", "48888", "43423", "63018")), ])
str(data)
## 'data.frame':    8784 obs. of  38 variables:
##  $ trl                       : int  20 12 17 14 21 3 10 13 6 23 ...
##  $ cnd                       : Factor w/ 2 levels "between","within": 2 2 2 2 1 2 2 2 2 1 ...
##  $ dim                       : Factor w/ 2 levels "irrel","rel": 2 1 2 2 2 1 1 2 1 2 ...
##  $ size1                     : num  3.4 2.6 2.2 2.6 2.2 2.2 2.6 2.2 3 3 ...
##  $ hue1                      : num  0.1 0.3 0.1 -0.3 -0.1 0.1 -0.1 -0.3 -0.1 -0.1 ...
##  $ size2                     : num  3.4 3 2.2 2.6 2.2 2.6 3 2.2 3.4 3 ...
##  $ hue2                      : num  0.3 0.3 0.3 -0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 ...
##  $ practice_trials.thisRepN  : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisTrialN: logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisN     : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisIndex : logi  NA NA NA NA NA NA ...
##  $ blocks.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisTrialN         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisN              : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisIndex          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisTrialN         : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisN              : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisIndex          : int  19 11 16 13 20 2 9 12 5 22 ...
##  $ break_loop.thisRepN       : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisTrialN     : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisN          : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisIndex      : logi  NA NA NA NA NA NA ...
##  $ thisRow.t                 : num  68.9 73.1 75.9 79.7 82.8 ...
##  $ notes                     : logi  NA NA NA NA NA NA ...
##  $ slider_exp.response       : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ slider_exp.rt             : num  3.89 2.6 3.45 2.87 4.87 ...
##  $ participant               : int  17202 17202 17202 17202 17202 17202 17202 17202 17202 17202 ...
##  $ session                   : Factor w/ 2 levels "Pre","Post": 2 2 2 2 2 2 2 2 2 2 ...
##  $ group                     : Factor w/ 4 levels "1100","1600",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ date                      : Factor w/ 122 levels "2025-02-25_13h08.44.108",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ expName                   : Factor w/ 1 level "SimilarityRatings": 1 1 1 1 1 1 1 1 1 1 ...
##  $ psychopyVersion           : Factor w/ 1 level "2023.2.3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ frameRate                 : num  60 60 60 60 60 ...
##  $ expStart                  : Factor w/ 122 levels "2025-02-25 13h09.40.421447 +0200",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ sbj                       : Factor w/ 61 levels "341","1003","1206",..: 10 10 10 10 10 10 10 10 10 10 ...
##  $ resp                      : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ block                     : num  1 1 1 1 1 1 1 1 1 1 ...

Comparison of Responses from “Exclusion-Instructions” Participants

#check if we can keep data from 5 first sbjs (instructions: we will delete your data)
data$excl_instr<-"no"
#For the first 5 participants, we need to register that the instructions were different.
#These 5 participants are: "17202" "40242" "57393" "89443" "94372"
data[data$sbj=="17202" |  data$sbj=="40242"  | data$sbj=="57393" | data$sbj=="89443" | data$sbj=="94372",]$excl_instr<-"yes"
data$excl_instr<-as.factor(data$excl_instr)
str(data)
## 'data.frame':    8784 obs. of  39 variables:
##  $ trl                       : int  20 12 17 14 21 3 10 13 6 23 ...
##  $ cnd                       : Factor w/ 2 levels "between","within": 2 2 2 2 1 2 2 2 2 1 ...
##  $ dim                       : Factor w/ 2 levels "irrel","rel": 2 1 2 2 2 1 1 2 1 2 ...
##  $ size1                     : num  3.4 2.6 2.2 2.6 2.2 2.2 2.6 2.2 3 3 ...
##  $ hue1                      : num  0.1 0.3 0.1 -0.3 -0.1 0.1 -0.1 -0.3 -0.1 -0.1 ...
##  $ size2                     : num  3.4 3 2.2 2.6 2.2 2.6 3 2.2 3.4 3 ...
##  $ hue2                      : num  0.3 0.3 0.3 -0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 ...
##  $ practice_trials.thisRepN  : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisTrialN: logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisN     : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisIndex : logi  NA NA NA NA NA NA ...
##  $ blocks.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisTrialN         : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisN              : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ blocks.thisIndex          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisTrialN         : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisN              : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisIndex          : int  19 11 16 13 20 2 9 12 5 22 ...
##  $ break_loop.thisRepN       : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisTrialN     : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisN          : logi  NA NA NA NA NA NA ...
##  $ break_loop.thisIndex      : logi  NA NA NA NA NA NA ...
##  $ thisRow.t                 : num  68.9 73.1 75.9 79.7 82.8 ...
##  $ notes                     : logi  NA NA NA NA NA NA ...
##  $ slider_exp.response       : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ slider_exp.rt             : num  3.89 2.6 3.45 2.87 4.87 ...
##  $ participant               : int  17202 17202 17202 17202 17202 17202 17202 17202 17202 17202 ...
##  $ session                   : Factor w/ 2 levels "Pre","Post": 2 2 2 2 2 2 2 2 2 2 ...
##  $ group                     : Factor w/ 4 levels "1100","1600",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ date                      : Factor w/ 122 levels "2025-02-25_13h08.44.108",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ expName                   : Factor w/ 1 level "SimilarityRatings": 1 1 1 1 1 1 1 1 1 1 ...
##  $ psychopyVersion           : Factor w/ 1 level "2023.2.3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ frameRate                 : num  60 60 60 60 60 ...
##  $ expStart                  : Factor w/ 122 levels "2025-02-25 13h09.40.421447 +0200",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ sbj                       : Factor w/ 61 levels "341","1003","1206",..: 10 10 10 10 10 10 10 10 10 10 ...
##  $ resp                      : int  5 7 5 4 3 4 3 2 7 5 ...
##  $ block                     : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ excl_instr                : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
#test if there's a difference in response distribution among participants (excl_instr= "yes" vs. "no")
table_sim<-table(data$resp, data$excl_instr)
chi_sim<-chisq.test(table_sim)
## Warning in chisq.test(table_sim): Chi-squared approximation may be incorrect
print(chi_sim)
## 
##  Pearson's Chi-squared test
## 
## data:  table_sim
## X-squared = 18.417, df = 8, p-value = 0.01831
#function to calculate the percentage of expected counts >=5)
check_expected_frequencies <- function(chisq_test_result) {
  expected <- chisq_test_result$expected
  total_cells <- length(expected)
  cells_over_5 <- sum(expected >= 5)
  percent_over_5 <- (cells_over_5 / total_cells) * 100
  return(percent_over_5)
}

check_expected_frequencies(chi_sim)
## [1] 94.44444
# it should be >80%

#plot distribution
plot_sim <- data %>%
  group_by(resp, excl_instr) %>%
  summarise(n = n()) %>%
  group_by(excl_instr) %>%
  mutate(freq = n / sum(n))
## `summarise()` has grouped output by 'resp'. You can override using the
## `.groups` argument.
ggplot(plot_sim, aes(x = as.factor(resp), y = freq, fill = excl_instr)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Response Distribution - Pre Session", x = "Response (1???9)", y = "Relative Frequency", fill = "Exclude\nInstructions") +
  theme_minimal()

#Calculate standardized score for the resp variable.
data <- data %>%
  group_by(sbj) %>%
  mutate(z_resp = (resp - mean(resp, na.rm = TRUE)) / sd(resp, na.rm = TRUE))

Similarity Change Plots, by Group and Pair Type

# 600 ms
###########

#Between-category differences
################################
data_btw600<-droplevels(data[data$cnd=="between" & data$group=="600",])
data_btw_av600<-aggregate(data_btw600$z_resp, list(data_btw600$sbj, data_btw600$session), mean)
colnames(data_btw_av600)<-c("sbj", "session", "z_resp")

#Within-category differences, Relevant Dimension 
#################################################
data_w_r600<-droplevels(data[data$cnd=="within" & data$dim=="rel" & data$group=="600",])
data_w_r_av600<-aggregate(data_w_r600$z_resp, list(data_w_r600$sbj, data_w_r600$session), mean)
colnames(data_w_r_av600)<-c("sbj", "session", "z_resp")

#Within-category differences, Irrelevant Dimension
#################################################
data_w_i600<-droplevels(data[data$cnd=="within" & data$dim=="irrel" & data$group=="600",])
data_w_i_av600<-aggregate(data_w_i600$z_resp, list(data_w_i600$sbj, data_w_i600$session), mean)
colnames(data_w_i_av600)<-c("sbj", "session", "z_resp")

#One graph 600 ms
###############################
par(mfrow=c(1,3),  oma = c(0, 0, 3, 0))
ylb="Standardized Similarity Ratings"
xlb="Session"
clrs=c("grey25", "grey75")
#between 
mn="Between Category Pairs\nRelevant Dimension"
boxplot(data=data_btw_av600, z_resp~session, frame.plot=F, xlab=xlb, ylim=c(-1.5,1.5), ylab=ylb, boxwex=0.5, col=clrs, main =mn, las=1, range=0)
#within, rel
mn="Within Category Pairs\n Relevant Dimension"
boxplot(data=data_w_r_av600, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
#within, irrel
mn="Within Category Pairs\n Irrelevant Dimension"
boxplot(data=data_w_i_av600, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
mtext("Group: 600 ms", outer = TRUE, cex = 1.5, font = 1.5)

par(mfrow=c(1,1), oma = c(0, 0, 0, 0))

# 1100 ms
###########

#Between-category differences 
################################
data_btw1100<-droplevels(data[data$cnd=="between" & data$group=="1100",])
data_btw_av1100<-aggregate(data_btw1100$z_resp, list(data_btw1100$sbj, data_btw1100$session), mean)
colnames(data_btw_av1100)<-c("sbj", "session", "z_resp")

#Within-category differences, Relevant Dimension 
#################################################
data_w_r1100<-droplevels(data[data$cnd=="within" & data$dim=="rel" & data$group=="1100",])
data_w_r_av1100<-aggregate(data_w_r1100$z_resp, list(data_w_r1100$sbj, data_w_r1100$session), mean)
colnames(data_w_r_av1100)<-c("sbj", "session", "z_resp")

#Within-category differences, Irrelevant Dimension 
#################################################
data_w_i1100<-droplevels(data[data$cnd=="within" & data$dim=="irrel" & data$group=="1100",])
data_w_i_av1100<-aggregate(data_w_i1100$z_resp, list(data_w_i1100$sbj, data_w_i1100$session), mean)
colnames(data_w_i_av1100)<-c("sbj", "session", "z_resp")

#One graph 1100 ms
###############################
par(mfrow=c(1,3),  oma = c(0, 0, 3, 0))
ylb="Standardized Similarity Ratings"
xlb="Session"
clrs=c("grey25", "grey75")
#between 
mn="Between Category Pairs\nRelevant Dimension"
boxplot(range=0, data=data_btw_av1100, z_resp~session, frame.plot=F, xlab=xlb, ylim=c(-1.5,1.5), ylab=ylb, boxwex=0.5, col=clrs, main =mn, las=1)
#within, rel
mn="Within Category Pairs\nRelevant Dimension"
boxplot(data=data_w_r_av1100, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
#within, irrel
mn="Within Category Pairs\nIrrelevant Dimension"
boxplot(data=data_w_i_av1100, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
mtext("Group: 1100ms", outer = TRUE, cex = 1.5, font = 1.5)

par(mfrow=c(1,1), oma = c(0, 0, 0, 0))

# 1600 ms
###########

#Between-category differences 
################################
data_btw1600<-droplevels(data[data$cnd=="between" & data$group=="1600",])
data_btw_av1600<-aggregate(data_btw1600$z_resp, list(data_btw1600$sbj, data_btw1600$session), mean)
colnames(data_btw_av1600)<-c("sbj", "session", "z_resp")

#Within-category differences, Relevant Dimension 
#################################################
data_w_r1600<-droplevels(data[data$cnd=="within" & data$dim=="rel" & data$group=="1600",])
data_w_r_av1600<-aggregate(data_w_r1600$z_resp, list(data_w_r1600$sbj, data_w_r1600$session), mean)
colnames(data_w_r_av1600)<-c("sbj", "session", "z_resp")

#Within-category differences, Irrelevant Dimension
#################################################
data_w_i1600<-droplevels(data[data$cnd=="within" & data$dim=="irrel" & data$group=="1600",])
data_w_i_av1600<-aggregate(data_w_i1600$z_resp, list(data_w_i1600$sbj, data_w_i1600$session), mean)
colnames(data_w_i_av1600)<-c("sbj", "session", "z_resp")

#One graph 1600 ms
###############################
par(mfrow=c(1,3),  oma = c(0, 0, 3, 0))
ylb="Standardized Similarity Ratings"
xlb="Session"
clrs=c("grey25", "grey75")
#between 
mn="Between Category Pairs\nRelevant Dimension"
boxplot(range=0, data=data_btw_av1600, z_resp~session, frame.plot=F, xlab=xlb, ylim=c(-1.5,1.5), ylab=ylb, boxwex=0.5, col=clrs, main =mn, las=1)
#within, rel
mn="Within Category Pairs\nRelevant Dimension"
boxplot(data=data_w_r_av1600, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
#within, irrel
mn="Within Category Pairs\nIrrelevant Dimension"
boxplot(data=data_w_i_av1600, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
mtext("Group: 1600ms", outer = TRUE, cex = 1.5, font = 1.5)

par(mfrow=c(1,1), oma = c(0, 0, 0, 0))

# RD
###########

#Between-category differences
################################
data_btwRD<-droplevels(data[data$cnd=="between" & data$group=="RD",])
data_btw_avRD<-aggregate(data_btwRD$z_resp, list(data_btwRD$sbj, data_btwRD$session), mean)
colnames(data_btw_avRD)<-c("sbj", "session", "z_resp")

#Within-category differences, Relevant Dimension 
#################################################
data_w_rRD<-droplevels(data[data$cnd=="within" & data$dim=="rel" & data$group=="RD",])
data_w_r_avRD<-aggregate(data_w_rRD$z_resp, list(data_w_rRD$sbj, data_w_rRD$session), mean)
colnames(data_w_r_avRD)<-c("sbj", "session", "z_resp")

#Within-category differences, Irrelevant Dimension 
#################################################
data_w_iRD<-droplevels(data[data$cnd=="within" & data$dim=="irrel" & data$group=="RD",])
data_w_i_avRD<-aggregate(data_w_iRD$z_resp, list(data_w_iRD$sbj, data_w_iRD$session), mean)
colnames(data_w_i_avRD)<-c("sbj", "session", "z_resp")

#One graph RD
###############################
par(mfrow=c(1,3),  oma = c(0, 0, 3, 0))
ylb="Standardized Similarity Ratings"
xlb="Session"
clrs=c("grey25", "grey75")
#between 
mn="Between Category Pairs\nRelevant Dimension"
boxplot(range=0, data=data_btw_avRD, z_resp~session, frame.plot=F, xlab=xlb, ylim=c(-1.5,1.5), ylab=ylb, boxwex=0.5, col=clrs, main =mn, las=1)
#within, rel
mn="Within Category Pairs\nRelevant Dimension"
boxplot(data=data_w_r_avRD, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
#within, irrel
mn="Within Category Pairs\nIrrelevant Dimension"
boxplot(data=data_w_i_avRD, z_resp~session, frame.plot=F, ylim=c(-1.5,1.5), xlab=xlb, ylab="", boxwex=0.5, col=clrs, main =mn, las=1, range=0)
mtext("Group: RD", outer = TRUE, cex = 1.5, font = 1.5)

par(mfrow=c(1,1), oma = c(0, 0, 0, 0))

Inferential Statistics - ANOVA

#create new factor, condition (pair type) with three levels
data$condition<-as.factor(ifelse(data$cnd=="between", "between", ifelse(data$dim=="rel","within_rel","within_irrel" )))

ezANOVA(data=data, dv=z_resp,wid=sbj, within=.(session,condition), between=group, type=3)
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may
## be inaccurate.
## $ANOVA
##                    Effect DFn DFd          F            p p<.05         ges
## 2                   group   3  57  2.9180733 4.179359e-02     * 0.009906707
## 3                 session   1  57 13.1225571 6.220974e-04     * 0.048932436
## 5               condition   2 114 42.3330979 1.780369e-14     * 0.288107750
## 4           group:session   3  57  0.8059441 4.957776e-01       0.009390649
## 6         group:condition   6 114  2.3418151 3.602935e-02     * 0.062936624
## 7       session:condition   2 114 10.0766925 9.338633e-05     * 0.028583838
## 8 group:session:condition   6 114  0.8783103 5.132696e-01       0.007635503
## 
## $`Mauchly's Test for Sphericity`
##                    Effect         W            p p<.05
## 5               condition 0.1464522 4.360026e-24     *
## 6         group:condition 0.1464522 4.360026e-24     *
## 7       session:condition 0.4552354 2.695317e-10     *
## 8 group:session:condition 0.4552354 2.695317e-10     *
## 
## $`Sphericity Corrections`
##                    Effect       GGe        p[GG] p[GG]<.05       HFe
## 5               condition 0.5395059 6.936719e-09         * 0.5416811
## 6         group:condition 0.5395059 7.736925e-02           0.5416811
## 7       session:condition 0.6473478 9.223859e-04         * 0.6560627
## 8 group:session:condition 0.6473478 4.786980e-01           0.6560627
##          p[HF] p[HF]<.05
## 5 6.525744e-09         *
## 6 7.708394e-02          
## 7 8.713289e-04         *
## 8 4.797683e-01
#report GG corrections
#2*0.5387983
#104*0.5387983

#2*0.6918409
#104*0.6918409

#6*0.5387983
#104*0.5387983

#Post-hoc comparisons:
aov_model <- aov_ez(id = "sbj", dv = "z_resp", data = data, within = c("session", "condition"), between = "group", type = 3)
## Warning: More than one observation per design cell, aggregating data using `fun_aggregate = mean`.
## To turn off this warning, pass `fun_aggregate = mean` explicitly.
## Contrasts set to contr.sum for the following variables: group
summary(aov_model)
## 
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
## 
##                         Sum Sq num Df Error SS den Df F value    Pr(>F)    
## (Intercept)              4.511      1    6.661     57 38.5996 6.430e-08 ***
## group                    1.023      3    6.661     57  2.9181 0.0417936 *  
## session                  5.260      1   22.848     57 13.1226 0.0006221 ***
## group:session            0.969      3   22.848     57  0.8059 0.4957776    
## condition               41.376      2   55.712    114 42.3331 1.780e-14 ***
## group:condition          6.867      6   55.712    114  2.3418 0.0360293 *  
## session:condition        3.008      2   17.017    114 10.0767 9.339e-05 ***
## group:session:condition  0.787      6   17.017    114  0.8783 0.5132696    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##                         Test statistic    p-value
## condition                      0.14645 0.0000e+00
## group:condition                0.14645 0.0000e+00
## session:condition              0.45524 2.6953e-10
## group:session:condition        0.45524 2.6953e-10
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##                          GG eps Pr(>F[GG])    
## condition               0.53951  6.937e-09 ***
## group:condition         0.53951  0.0773693 .  
## session:condition       0.64735  0.0009224 ***
## group:session:condition 0.64735  0.4786980    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                            HF eps   Pr(>F[HF])
## condition               0.5416811 6.525744e-09
## group:condition         0.5416811 7.708394e-02
## session:condition       0.6560627 8.713289e-04
## group:session:condition 0.6560627 4.797683e-01
emms <- emmeans(aov_model, ~ session |condition*group)

comparisons <- contrast(emms, method = "pairwise", adjust = "bonferroni")
summary(comparisons)
## condition = between, group = 1100:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.4262 0.188 57   2.271  0.0269
## 
## condition = within_irrel, group = 1100:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.0378 0.161 57   0.235  0.8149
## 
## condition = within_rel, group = 1100:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.1993 0.179 57   1.112  0.2709
## 
## condition = between, group = 1600:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.2748 0.188 57   1.465  0.1485
## 
## condition = within_irrel, group = 1600:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.2779 0.161 57  -1.728  0.0895
## 
## condition = within_rel, group = 1600:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.2501 0.179 57   1.395  0.1686
## 
## condition = between, group = 600:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.4273 0.182 57   2.352  0.0222
## 
## condition = within_irrel, group = 600:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.2695 0.156 57   1.730  0.0891
## 
## condition = within_rel, group = 600:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.3693 0.174 57   2.127  0.0377
## 
## condition = between, group = RD:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.5111 0.188 57   2.723  0.0086
## 
## condition = within_irrel, group = RD:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.0754 0.161 57  -0.469  0.6409
## 
## condition = within_rel, group = RD:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.4663 0.179 57   2.600  0.0118

Similarity Ratings Plot by Group, Block, Session, and Pair Type

temp<-aggregate(z_resp~block+session+group+condition, data=data, FUN=mean)
temp2<-aggregate(z_resp~block+session+group+condition, data=data, FUN=se)
temp$se<-1.96*temp2$z_resp

par(mfrow=c(3,1), oma = c(0, 0, 1.5, 0))
###Between Relevant
cond="between"
main="Between-Category Relevant Dimension"
xlab="Block"
ylab="Standardized Similarity Ratings"
cex=1.5
offset=.03
col=c("grey70","grey60","grey50", "grey40" )
axis=c(1.1,2.1,3.1)
ylim=c(-1, 1)

#600 Pre
pch=c(0,15)
plotCI(x=1:3, y=temp[temp$session=="Pre" & temp$group=="600" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="600" & temp$condition==cond,]$se, bty="n", las=1, xaxt="n", xlab=xlab, ylab=ylab, col=col[1], lty=2, cex=cex, pch=pch[1], xlim=c(1,3.3), gap=0, main=main, ylim=ylim)
axis(side=1, at=axis, labels=c(1,2,3))
#600 Post
plotCI(x=1:3+offset, y=temp[temp$session=="Post" & temp$group=="600" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="600" & temp$condition==cond,]$se, pch=pch[2], col=col[1], add=T, cex=cex, gap=0)
mtext("Similarity Ratings by Pair Type, Group, Session, and Block", outer = TRUE, cex = 1, font = 2)

#1100 Pre
pch=c(21,16)
plotCI(x=1:3+2*offset, y=temp[temp$session=="Pre" & temp$group=="1100" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="1100" & temp$condition==cond,]$se, pch=pch[1], col=col[2], add=T, cex=cex, lty=2, gap=0)
#1100 Post
plotCI(x=1:3+3*offset, y=temp[temp$session=="Post" & temp$group=="1100" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="1100" & temp$condition==cond,]$se, pch=pch[2], col=col[2], add=T, cex=cex, gap=0)

#1600 Pre
pch=c(2,17)
plotCI(x=1:3+4*offset, y=temp[temp$session=="Pre" & temp$group=="1600"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="1600"& temp$condition==cond,]$se, pch=pch[1], col=col[3], add=T, cex=cex, lty=2, gap=0)
#1600 Post
plotCI(x=1:3+5*offset, y=temp[temp$session=="Post" & temp$group=="1600"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="1600"& temp$condition==cond,]$se, pch=pch[2], col=col[3], add=T, cex=cex, gap=0)

#RD Pre
pch=c(23,18)
plotCI(x=1:3+6*offset, y=temp[temp$session=="Pre" & temp$group=="RD"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="RD" & temp$condition==cond,]$se, pch=pch[1], col=col[4], add=T, cex=cex, lty=2, gap=0)
#RD Post
plotCI(x=1:3+7*offset, y=temp[temp$session=="Post" & temp$group=="RD" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="RD" & temp$condition==cond,]$se, pch=pch[2], col=col[4], add=T, cex=cex, gap=0)

legend(x=2.3, y=1, legend=c("600 ms - Pre", "600 ms - Post", "1100 ms - Pre", "1100 ms - Post", "1600 ms - Pre", "1600 ms - Post","RD - Pre", "RD - Post"), col=c("grey70", "grey70", "grey60", "grey60", "grey50", "grey50", "grey40", "grey40"), lty=c(2,1,2,1,2,1,2,1), pch=c(0,15, 21,16, 2,17, 23,18 ), bty="n", seg.len=2, lwd=1, pt.cex=1.5)

###Within Relevant
cond="within_rel"
main="Within-Category Relevant Dimension"
ylim=c(-1, 1)
#600 Pre
pch=c(0,15)
plotCI(x=1:3, y=temp[temp$session=="Pre" & temp$group=="600" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="600" & temp$condition==cond,]$se, bty="n", las=1, xaxt="n", xlab=xlab, ylab=ylab, col=col[1], lty=2, cex=cex, pch=pch[1], xlim=c(1,3.3), gap=0, main=main, ylim=ylim)
axis(side=1, at=axis, labels=c(1,2,3))
#600 Post
plotCI(x=1:3+offset, y=temp[temp$session=="Post" & temp$group=="600" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="600" & temp$condition==cond,]$se, pch=pch[2], col=col[1], add=T, cex=cex, gap=0)

#1100 Pre
pch=c(21,16)
plotCI(x=1:3+2*offset, y=temp[temp$session=="Pre" & temp$group=="1100" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="1100" & temp$condition==cond,]$se, pch=pch[1], col=col[2], add=T, cex=cex, lty=2, gap=0)
#1100 Post
plotCI(x=1:3+3*offset, y=temp[temp$session=="Post" & temp$group=="1100" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="1100" & temp$condition==cond,]$se, pch=pch[2], col=col[2], add=T, cex=cex, gap=0)

#1600 Pre
pch=c(2,17)
plotCI(x=1:3+4*offset, y=temp[temp$session=="Pre" & temp$group=="1600"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="1600"& temp$condition==cond,]$se, pch=pch[1], col=col[3], add=T, cex=cex, lty=2, gap=0)
#1600 Post
plotCI(x=1:3+5*offset, y=temp[temp$session=="Post" & temp$group=="1600"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="1600"& temp$condition==cond,]$se, pch=pch[2], col=col[3], add=T, cex=cex, gap=0)

#RD Pre
pch=c(23,18)
plotCI(x=1:3+6*offset, y=temp[temp$session=="Pre" & temp$group=="RD"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="RD" & temp$condition==cond,]$se, pch=pch[1], col=col[4], add=T, cex=cex, lty=2, gap=0)
#RD Post
plotCI(x=1:3+7*offset, y=temp[temp$session=="Post" & temp$group=="RD" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="RD" & temp$condition==cond,]$se, pch=pch[2], col=col[4], add=T, cex=cex, gap=0)

legend(x=2.3, y=1, legend=c("600 ms - Pre", "600 ms - Post", "1100 ms - Pre", "1100 ms - Post", "1600 ms - Pre", "1600 ms - Post","RD - Pre", "RD - Post"), col=c("grey70", "grey70", "grey60", "grey60", "grey50", "grey50", "grey40", "grey40"), lty=c(2,1,2,1,2,1,2,1), pch=c(0,15, 21,16, 2,17, 23,18 ), bty="n", seg.len=2, lwd=1, pt.cex=1.5)

###Within Irrelevant
cond="within_irrel"
main="Within-Category Irrelevant Dimension"
ylim=c(-1, 1)
#600 Pre
pch=c(0,15)
plotCI(x=1:3, y=temp[temp$session=="Pre" & temp$group=="600" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="600" & temp$condition==cond,]$se, bty="n", las=1, xaxt="n", xlab=xlab, ylab=ylab, col=col[1], lty=2, cex=cex, pch=pch[1], xlim=c(1,3.3), gap=0, main=main, ylim=ylim)
axis(side=1, at=axis, labels=c(1,2,3))
#600 Post
plotCI(x=1:3+offset, y=temp[temp$session=="Post" & temp$group=="600" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="600" & temp$condition==cond,]$se, pch=pch[2], col=col[1], add=T, cex=cex, gap=0)

#1100 Pre
pch=c(21,16)
plotCI(x=1:3+2*offset, y=temp[temp$session=="Pre" & temp$group=="1100" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="1100" & temp$condition==cond,]$se, pch=pch[1], col=col[2], add=T, cex=cex, lty=2, gap=0)
#1100 Post
plotCI(x=1:3+3*offset, y=temp[temp$session=="Post" & temp$group=="1100" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="1100" & temp$condition==cond,]$se, pch=pch[2], col=col[2], add=T, cex=cex, gap=0)

#1600 Pre
pch=c(2,17)
plotCI(x=1:3+4*offset, y=temp[temp$session=="Pre" & temp$group=="1600"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="1600"& temp$condition==cond,]$se, pch=pch[1], col=col[3], add=T, cex=cex, lty=2, gap=0)
#1600 Post
plotCI(x=1:3+5*offset, y=temp[temp$session=="Post" & temp$group=="1600"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="1600"& temp$condition==cond,]$se, pch=pch[2], col=col[3], add=T, cex=cex, gap=0)

#RD Pre
pch=c(23,18)
plotCI(x=1:3+6*offset, y=temp[temp$session=="Pre" & temp$group=="RD"& temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Pre" & temp$group=="RD" & temp$condition==cond,]$se, pch=pch[1], col=col[4], add=T, cex=cex, lty=2, gap=0)
#RD Post
plotCI(x=1:3+7*offset, y=temp[temp$session=="Post" & temp$group=="RD" & temp$condition==cond,]$z_resp, uiw=temp[temp$session=="Post" & temp$group=="RD" & temp$condition==cond,]$se, pch=pch[2], col=col[4], add=T, cex=cex, gap=0)

legend(x=2.3, y=1, legend=c("600 ms - Pre", "600 ms - Post", "1100 ms - Pre", "1100 ms - Post", "1600 ms - Pre", "1600 ms - Post","RD - Pre", "RD - Post"), col=c("grey70", "grey70", "grey60", "grey60", "grey50", "grey50", "grey40", "grey40"), lty=c(2,1,2,1,2,1,2,1), pch=c(0,15, 21,16, 2,17, 23,18 ), bty="n", seg.len=2, lwd=1, pt.cex=1.5)

par(mfrow=c(1,1), oma=c(0,0,0,0))

Exploratory Analysis, Similarity Ratings by Group, Block, Session, and Pair Type

data$block <- as.factor(data$block)
ezANOVA(data=data, dv=z_resp,wid=sbj, within=.(session,condition, block), between=group, type=3)
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may
## be inaccurate.
## $ANOVA
##                           Effect DFn DFd          F            p p<.05
## 2                          group   3  57  2.9180733 4.179359e-02     *
## 3                        session   1  57 13.1225571 6.220974e-04     *
## 5                      condition   2 114 42.3330979 1.780369e-14     *
## 7                          block   2 114  0.5310578 5.894301e-01      
## 4                  group:session   3  57  0.8059441 4.957776e-01      
## 6                group:condition   6 114  2.3418151 3.602935e-02     *
## 8                    group:block   6 114  0.4024683 8.760869e-01      
## 9              session:condition   2 114 10.0766925 9.338633e-05     *
## 11                 session:block   2 114  4.3105338 1.568073e-02     *
## 13               condition:block   4 228  0.7182833 5.802102e-01      
## 10       group:session:condition   6 114  0.8783103 5.132696e-01      
## 12           group:session:block   6 114  0.8749942 5.156894e-01      
## 14         group:condition:block  12 228  1.3023070 2.180803e-01      
## 15       session:condition:block   4 228  1.4450889 2.199765e-01      
## 16 group:session:condition:block  12 228  0.7286911 7.226568e-01      
##             ges
## 2  0.0071402833
## 3  0.0356606858
## 5  0.2253351227
## 7  0.0007758908
## 4  0.0067673479
## 6  0.0460504858
## 8  0.0017623120
## 9  0.0207109704
## 11 0.0062710347
## 13 0.0008335078
## 10 0.0054997847
## 12 0.0038282549
## 14 0.0045169426
## 15 0.0012221587
## 16 0.0018476754
## 
## $`Mauchly's Test for Sphericity`
##                           Effect         W            p p<.05
## 5                      condition 0.1464522 4.360026e-24     *
## 6                group:condition 0.1464522 4.360026e-24     *
## 7                          block 0.8123173 2.967017e-03     *
## 8                    group:block 0.8123173 2.967017e-03     *
## 9              session:condition 0.4552354 2.695317e-10     *
## 10       group:session:condition 0.4552354 2.695317e-10     *
## 11                 session:block 0.5534166 6.389427e-08     *
## 12           group:session:block 0.5534166 6.389427e-08     *
## 13               condition:block 0.5024261 1.660983e-05     *
## 14         group:condition:block 0.5024261 1.660983e-05     *
## 15       session:condition:block 0.6767251 1.013030e-02     *
## 16 group:session:condition:block 0.6767251 1.013030e-02     *
## 
## $`Sphericity Corrections`
##                           Effect       GGe        p[GG] p[GG]<.05       HFe
## 5                      condition 0.5395059 6.936719e-09         * 0.5416811
## 6                group:condition 0.5395059 7.736925e-02           0.5416811
## 7                          block 0.8419757 5.591576e-01           0.8647507
## 8                    group:block 0.8419757 8.477849e-01           0.8647507
## 9              session:condition 0.6473478 9.223859e-04         * 0.6560627
## 10       group:session:condition 0.6473478 4.786980e-01           0.6560627
## 11                 session:block 0.6912840 2.903417e-02         * 0.7029177
## 12           group:session:block 0.6912840 4.859481e-01           0.7029177
## 13               condition:block 0.7473196 5.418708e-01           0.7932598
## 14         group:condition:block 0.7473196 2.391275e-01           0.7932598
## 15       session:condition:block 0.8156627 2.285582e-01           0.8710596
## 16 group:session:condition:block 0.8156627 6.938578e-01           0.8710596
##           p[HF] p[HF]<.05
## 5  6.525744e-09         *
## 6  7.708394e-02          
## 7  5.638393e-01          
## 8  8.523170e-01          
## 9  8.713289e-04         *
## 10 4.797683e-01          
## 11 2.836804e-02         *
## 12 4.872965e-01          
## 13 5.496685e-01          
## 14 2.351212e-01          
## 15 2.260314e-01          
## 16 7.030774e-01
#report GG corrections
#0.5387983*2
#0.5387983*104

#0.6918409*2
#0.6918409*104  

#0.5387983*6
#0.5387983*104

#0.6760577*2
#0.6760577*104

#0.8398166*2
#0.8398166*104

levels(data$group)
## [1] "1100" "1600" "600"  "RD"
levels(data$condition)
## [1] "between"      "within_irrel" "within_rel"
#to facilitate post-hoc comparisons
data$group <- factor(data$group, levels = c("600", "1100", "1600", "RD"))
data$condition <- factor(data$condition, levels = c("between", "within_rel", "within_irrel"))

# post-hoc comparisons
aov_model <- aov_ez(id = "sbj", dv = "z_resp", data = data, within = c("session", "condition", "block"), between = "group", type = 3)
## Warning: More than one observation per design cell, aggregating data using `fun_aggregate = mean`.
## To turn off this warning, pass `fun_aggregate = mean` explicitly.
## Contrasts set to contr.sum for the following variables: group
summary(aov_model)
## 
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
## 
##                                Sum Sq num Df Error SS den Df F value    Pr(>F)
## (Intercept)                    13.532      1   19.982     57 38.5996 6.430e-08
## group                           3.069      3   19.982     57  2.9181 0.0417936
## session                        15.780      1   68.545     57 13.1226 0.0006221
## group:session                   2.908      3   68.545     57  0.8059 0.4957776
## condition                     124.129      2  167.135    114 42.3331 1.780e-14
## group:condition                20.600      6  167.135    114  2.3418 0.0360293
## block                           0.331      2   35.565    114  0.5311 0.5894301
## group:block                     0.753      6   35.565    114  0.4025 0.8760869
## session:condition               9.025      2   51.051    114 10.0767 9.339e-05
## group:session:condition         2.360      6   51.051    114  0.8783 0.5132696
## session:block                   2.693      2   35.610    114  4.3105 0.0156807
## group:session:block             1.640      6   35.610    114  0.8750 0.5156894
## condition:block                 0.356      4   28.249    228  0.7183 0.5802102
## group:condition:block           1.936     12   28.249    228  1.3023 0.2180803
## session:condition:block         0.522      4   20.597    228  1.4451 0.2199765
## group:session:condition:block   0.790     12   20.597    228  0.7287 0.7226568
##                                  
## (Intercept)                   ***
## group                         *  
## session                       ***
## group:session                    
## condition                     ***
## group:condition               *  
## block                            
## group:block                      
## session:condition             ***
## group:session:condition          
## session:block                 *  
## group:session:block              
## condition:block                  
## group:condition:block            
## session:condition:block          
## group:session:condition:block    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##                               Test statistic   p-value
## condition                            0.14645 0.0000000
## group:condition                      0.14645 0.0000000
## block                                0.81232 0.0029670
## group:block                          0.81232 0.0029670
## session:condition                    0.45524 0.0000000
## group:session:condition              0.45524 0.0000000
## session:block                        0.55342 0.0000001
## group:session:block                  0.55342 0.0000001
## condition:block                      0.50243 0.0000166
## group:condition:block                0.50243 0.0000166
## session:condition:block              0.67673 0.0101303
## group:session:condition:block        0.67673 0.0101303
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##                                GG eps Pr(>F[GG])    
## condition                     0.53951  6.937e-09 ***
## group:condition               0.53951  0.0773693 .  
## block                         0.84198  0.5591576    
## group:block                   0.84198  0.8477849    
## session:condition             0.64735  0.0009224 ***
## group:session:condition       0.64735  0.4786980    
## session:block                 0.69128  0.0290342 *  
## group:session:block           0.69128  0.4859481    
## condition:block               0.74732  0.5418708    
## group:condition:block         0.74732  0.2391275    
## session:condition:block       0.81566  0.2285582    
## group:session:condition:block 0.81566  0.6938578    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                  HF eps   Pr(>F[HF])
## condition                     0.5416811 6.525744e-09
## group:condition               0.5416811 7.708394e-02
## block                         0.8647507 5.638393e-01
## group:block                   0.8647507 8.523170e-01
## session:condition             0.6560627 8.713289e-04
## group:session:condition       0.6560627 4.797683e-01
## session:block                 0.7029177 2.836804e-02
## group:session:block           0.7029177 4.872965e-01
## condition:block               0.7932598 5.496685e-01
## group:condition:block         0.7932598 2.351212e-01
## session:condition:block       0.8710596 2.260314e-01
## group:session:condition:block 0.8710596 7.030774e-01
emms <- emmeans(aov_model, ~ session |condition*group*block)

comparisons <- contrast(emms, method = "pairwise", adjust = "bonferroni")
summary(comparisons)
## condition = between, group = 600, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.6512 0.254 57   2.564  0.0130
## 
## condition = within_rel, group = 600, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.6175 0.237 57   2.604  0.0117
## 
## condition = within_irrel, group = 600, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.3717 0.217 57   1.711  0.0925
## 
## condition = between, group = 1100, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.4590 0.262 57   1.750  0.0856
## 
## condition = within_rel, group = 1100, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.0494 0.245 57   0.202  0.8407
## 
## condition = within_irrel, group = 1100, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.0593 0.224 57   0.264  0.7924
## 
## condition = between, group = 1600, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.3661 0.262 57   1.395  0.1683
## 
## condition = within_rel, group = 1600, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.4243 0.245 57   1.733  0.0886
## 
## condition = within_irrel, group = 1600, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.3643 0.224 57  -1.624  0.1099
## 
## condition = between, group = RD, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.7265 0.262 57   2.769  0.0076
## 
## condition = within_rel, group = RD, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.6357 0.245 57   2.595  0.0120
## 
## condition = within_irrel, group = RD, block = X1:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.0183 0.224 57  -0.082  0.9351
## 
## condition = between, group = 600, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.5246 0.216 57   2.425  0.0185
## 
## condition = within_rel, group = 600, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.3992 0.202 57   1.979  0.0527
## 
## condition = within_irrel, group = 600, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.3946 0.163 57   2.425  0.0185
## 
## condition = between, group = 1100, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.5131 0.223 57   2.297  0.0253
## 
## condition = within_rel, group = 1100, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.3781 0.208 57   1.814  0.0749
## 
## condition = within_irrel, group = 1100, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.1131 0.168 57   0.673  0.5038
## 
## condition = between, group = 1600, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.2871 0.223 57   1.285  0.2039
## 
## condition = within_rel, group = 1600, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.1717 0.208 57   0.824  0.4134
## 
## condition = within_irrel, group = 1600, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.2420 0.168 57  -1.440  0.1554
## 
## condition = between, group = RD, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.5514 0.223 57   2.469  0.0166
## 
## condition = within_rel, group = RD, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.4899 0.208 57   2.351  0.0222
## 
## condition = within_irrel, group = RD, block = X2:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.1507 0.168 57  -0.897  0.3737
## 
## condition = between, group = 600, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.1061 0.186 57   0.569  0.5716
## 
## condition = within_rel, group = 600, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.0912 0.168 57   0.544  0.5889
## 
## condition = within_irrel, group = 600, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.0421 0.202 57   0.209  0.8353
## 
## condition = between, group = 1100, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.3065 0.193 57   1.592  0.1170
## 
## condition = within_rel, group = 1100, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.1705 0.173 57   0.984  0.3295
## 
## condition = within_irrel, group = 1100, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.0589 0.208 57  -0.283  0.7783
## 
## condition = between, group = 1600, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.1713 0.193 57   0.890  0.3774
## 
## condition = within_rel, group = 1600, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.1542 0.173 57   0.889  0.3775
## 
## condition = within_irrel, group = 1600, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.2275 0.208 57  -1.092  0.2795
## 
## condition = between, group = RD, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.2552 0.193 57   1.325  0.1903
## 
## condition = within_rel, group = RD, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post   0.2733 0.173 57   1.577  0.1204
## 
## condition = within_irrel, group = RD, block = X3:
##  contrast   estimate    SE df t.ratio p.value
##  Pre - Post  -0.0573 0.208 57  -0.275  0.7842

Correlation Analyses, Accuracy ~ Perceptual Change

# we average all ratings for specific pairs
dat<- aggregate(z_resp~sbj+ session + size1+hue1+size2+hue2+ group, data=data, FUN=mean)
#we tranform data
wide_dat <- reshape(dat, timevar = "session", idvar = c("sbj", "size1","hue1", "size2", "hue2", "group"),  direction = "wide")
# calculate diff between Post and Pre for each pair
wide_dat$diff <- wide_dat$z_resp.Post - wide_dat$z_resp.Pre
#average across pairs
d_sim<-aggregate(diff~sbj+group, data=wide_dat, FUN=mean)

#load average accuracy
d_cat<-read.csv("d_cat.csv", header=T)
d_cat$sbj<-as.factor(d_cat$sbj)

#merge the two data-sets
d_cor<-left_join(d_cat, d_sim, by = "sbj")
cor.test(d_cor$acc, d_cor$diff)
## 
##  Pearson's product-moment correlation
## 
## data:  d_cor$acc and d_cor$diff
## t = -0.96544, df = 54, p-value = 0.3386
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3801426  0.1373437
## sample estimates:
##        cor 
## -0.1302603
#by group
#600
cor.test(d_cor[d_cor$group.x=="600",]$acc, d_cor[d_cor$group.x=="600",]$diff)
## 
##  Pearson's product-moment correlation
## 
## data:  d_cor[d_cor$group.x == "600", ]$acc and d_cor[d_cor$group.x == "600", ]$diff
## t = -1.4543, df = 12, p-value = 0.1715
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.7613092  0.1805787
## sample estimates:
##        cor 
## -0.3870882
#ns

#1100
cor.test(d_cor[d_cor$group.x=="1100",]$acc, d_cor[d_cor$group.x=="1100",]$diff)
## 
##  Pearson's product-moment correlation
## 
## data:  d_cor[d_cor$group.x == "1100", ]$acc and d_cor[d_cor$group.x == "1100", ]$diff
## t = 0.18303, df = 12, p-value = 0.8578
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4915794  0.5674556
## sample estimates:
##        cor 
## 0.05276149
#ns

#1600
cor.test(d_cor[d_cor$group.x=="1600",]$acc, d_cor[d_cor$group.x=="1600",]$diff)
## 
##  Pearson's product-moment correlation
## 
## data:  d_cor[d_cor$group.x == "1600", ]$acc and d_cor[d_cor$group.x == "1600", ]$diff
## t = -2.0833, df = 12, p-value = 0.05928
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.82135318  0.02093757
## sample estimates:
##        cor 
## -0.5153672
# p = 0.059 

#RD
cor.test(d_cor[d_cor$group.x=="RD",]$acc, d_cor[d_cor$group.x=="RD",]$diff)
## 
##  Pearson's product-moment correlation
## 
## data:  d_cor[d_cor$group.x == "RD", ]$acc and d_cor[d_cor$group.x == "RD", ]$diff
## t = -0.50917, df = 12, p-value = 0.6199
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.6275794  0.4173593
## sample estimates:
##       cor 
## -0.145423
#ns

#Correlation analysis only for those  groups (600 and RD) that exhibited perceptual change
cor.test(d_cor[d_cor$group.x=="RD" | d_cor$group.x=="600",]$acc, d_cor[d_cor$group.x=="RD" | d_cor$group.x=="600",]$diff)
## 
##  Pearson's product-moment correlation
## 
## data:  d_cor[d_cor$group.x == "RD" | d_cor$group.x == "600", ]$acc and d_cor[d_cor$group.x == "RD" | d_cor$group.x == "600", ]$diff
## t = -1.0761, df = 26, p-value = 0.2917
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5381210  0.1804798
## sample estimates:
##        cor 
## -0.2065014
#ns

Session Information

sessionInfo()
## R version 4.3.1 (2023-06-16 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## time zone: Europe/Athens
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] emmeans_1.8.8 afex_1.4-1    lme4_1.1-34   Matrix_1.6-1  car_3.1-2    
##  [6] carData_3.0-5 gplots_3.1.3  sciplot_1.2-0 ez_4.4-0      rstatix_0.7.2
## [11] ggplot2_3.4.3 dplyr_1.1.3  
## 
## loaded via a namespace (and not attached):
##  [1] gtable_0.3.4        xfun_0.40           bslib_0.5.1        
##  [4] caTools_1.18.2      lattice_0.21-8      numDeriv_2016.8-1.1
##  [7] vctrs_0.6.3         tools_4.3.1         bitops_1.0-7       
## [10] generics_0.1.3      sandwich_3.0-2      parallel_4.3.1     
## [13] tibble_3.2.1        fansi_1.0.4         pkgconfig_2.0.3    
## [16] KernSmooth_2.23-21  lifecycle_1.0.3     farver_2.1.1       
## [19] compiler_4.3.1      stringr_1.5.0       munsell_0.5.0      
## [22] codetools_0.2-19    lmerTest_3.1-3      htmltools_0.5.6    
## [25] sass_0.4.7          yaml_2.3.7          pillar_1.9.0       
## [28] nloptr_2.0.3        jquerylib_0.1.4     tidyr_1.3.0        
## [31] MASS_7.3-60         cachem_1.0.8        multcomp_1.4-25    
## [34] boot_1.3-28.1       abind_1.4-5         nlme_3.1-162       
## [37] gtools_3.9.4        tidyselect_1.2.0    digest_0.6.33      
## [40] mvtnorm_1.2-3       stringi_1.7.12      reshape2_1.4.4     
## [43] purrr_1.0.2         labeling_0.4.3      splines_4.3.1      
## [46] fastmap_1.1.1       grid_4.3.1          colorspace_2.1-0   
## [49] cli_3.6.1           magrittr_2.0.3      survival_3.5-5     
## [52] utf8_1.2.3          TH.data_1.1-2       broom_1.0.5        
## [55] withr_2.5.0         scales_1.2.1        backports_1.4.1    
## [58] estimability_1.4.1  rmarkdown_2.24      zoo_1.8-12         
## [61] evaluate_0.21       knitr_1.44          mgcv_1.8-42        
## [64] rlang_1.1.1         Rcpp_1.0.11         xtable_1.8-4       
## [67] glue_1.6.2          rstudioapi_0.15.0   minqa_1.2.5        
## [70] jsonlite_1.8.7      R6_2.5.1            plyr_1.8.8