Load libraries and data

Transfer data and .Rmd files to one folder and set working directory there. If needed, install R.matlab and caret libraries and subsequently load them. Load R.matlab package to handle the .mat file, also load 10 rows to check the X_TRAIN dataset.

setwd("D:/Data_Science_Projects/Image_Classification")
#install.packages(c('caret'))
library(R.matlab)
## Warning: package 'R.matlab' was built under R version 3.2.3
## R.matlab v3.3.0 (2015-09-22) successfully loaded. See ?R.matlab for help.
## 
## Attaching package: 'R.matlab'
## 
## The following objects are masked from 'package:base':
## 
##     getOption, isOpen
library(e1071)
library(caret)
## Warning: package 'caret' was built under R version 3.2.3
## Loading required package: lattice
## Loading required package: ggplot2
data <- read.csv("Mydata.csv", header=FALSE, nrows=10)

for(i in colnames(data)){
  data[,i] <- as.numeric(data[,i])
}
integer <- as.vector(lapply(data, class) == "integer")
numeric <- as.vector(lapply(data, class) == "numeric")
sum(integer)
## [1] 0
sum(numeric)
## [1] 1163
if (isTRUE(sum(integer)+sum(numeric)==1163)){
      print("You can go on doing the magic tricks, since all variables in the X_TRAIN dataset are numeric or integer")
      rm(integer)
      rm(numeric)
}else print("tu es stupido")
## [1] "You can go on doing the magic tricks, since all variables in the X_TRAIN dataset are numeric or integer"
data <- read.csv("MyData.csv", header=TRUE)

for(i in colnames(data)){
  data[,i] <- as.numeric(data[,i])
}
if(isTRUE(sum(as.vector(lapply(data,class)=="numeric"))==1163)){
  print("Go on and process the data")
}
## [1] "Go on and process the data"
rm(i)
data[,1] <- as.factor(data[,1])

Data preprocessing

  1. Check for duplicated records. The context presents little chance of such event but one never knows. In case duplicated records exist, then the nice function “unique” will be applied to acquire unique records :-).
sum(duplicated(data)==TRUE) #2 records found. Impressive.
## [1] 2
data <- unique(data)

Well who would expect it, sum(duplicated(data)==TRUE) duplicated records were found. Subsequently, these were removed using the nice “unique” function.

  1. Check for missing values.
sum(is.na(data)) #No missing values, hence no further action on this.
## [1] 0

A benchmark modelling will take place to check all data transformations against the baseline dataset which is considered to be the one resulted after Near Zero Variance, duplicated records deletion as well as missing values check.

fitControl <- trainControl(## 10-fold CV
  method = "repeatedcv",
  number = 5,
  #classProbs = TRUE,
  ## repeated one times
  repeats = 1)

gbmGrid <-  expand.grid(interaction.depth = 2,
                        n.trees = 300,
                        shrinkage = 0.15,
                        n.minobsinnode = 10)

gbmFit <- train(V1~., data = data,
                method = "gbm",
                trControl = fitControl,
                verbose = TRUE,
                tuneGrid = gbmGrid)
## Loading required package: gbm
## Loading required package: survival
## 
## Attaching package: 'survival'
## 
## The following object is masked from 'package:caret':
## 
##     cluster
## 
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.1
## Loading required package: plyr
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2733
##      2        1.2079             nan     0.1500    0.1974
##      3        1.0830             nan     0.1500    0.1576
##      4        0.9811             nan     0.1500    0.1127
##      5        0.9084             nan     0.1500    0.0948
##      6        0.8465             nan     0.1500    0.0776
##      7        0.7950             nan     0.1500    0.0633
##      8        0.7522             nan     0.1500    0.0470
##      9        0.7193             nan     0.1500    0.0452
##     10        0.6873             nan     0.1500    0.0378
##     20        0.5107             nan     0.1500    0.0127
##     40        0.3823             nan     0.1500    0.0001
##     60        0.3217             nan     0.1500    0.0001
##     80        0.2815             nan     0.1500   -0.0006
##    100        0.2498             nan     0.1500   -0.0014
##    120        0.2250             nan     0.1500   -0.0010
##    140        0.2029             nan     0.1500   -0.0013
##    160        0.1855             nan     0.1500   -0.0007
##    180        0.1692             nan     0.1500   -0.0011
##    200        0.1557             nan     0.1500   -0.0005
##    220        0.1436             nan     0.1500   -0.0009
##    240        0.1322             nan     0.1500   -0.0014
##    260        0.1221             nan     0.1500   -0.0013
##    280        0.1128             nan     0.1500   -0.0007
##    300        0.1057             nan     0.1500   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2752
##      2        1.2083             nan     0.1500    0.1985
##      3        1.0817             nan     0.1500    0.1460
##      4        0.9869             nan     0.1500    0.1107
##      5        0.9147             nan     0.1500    0.0911
##      6        0.8557             nan     0.1500    0.0741
##      7        0.8064             nan     0.1500    0.0607
##      8        0.7677             nan     0.1500    0.0555
##      9        0.7305             nan     0.1500    0.0451
##     10        0.6989             nan     0.1500    0.0394
##     20        0.5166             nan     0.1500    0.0127
##     40        0.3863             nan     0.1500    0.0011
##     60        0.3292             nan     0.1500    0.0010
##     80        0.2872             nan     0.1500   -0.0010
##    100        0.2558             nan     0.1500   -0.0006
##    120        0.2306             nan     0.1500   -0.0016
##    140        0.2096             nan     0.1500   -0.0012
##    160        0.1896             nan     0.1500   -0.0015
##    180        0.1749             nan     0.1500   -0.0020
##    200        0.1601             nan     0.1500   -0.0013
##    220        0.1478             nan     0.1500   -0.0002
##    240        0.1366             nan     0.1500   -0.0003
##    260        0.1250             nan     0.1500   -0.0006
##    280        0.1166             nan     0.1500   -0.0013
##    300        0.1083             nan     0.1500   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2732
##      2        1.2055             nan     0.1500    0.1946
##      3        1.0831             nan     0.1500    0.1412
##      4        0.9879             nan     0.1500    0.1198
##      5        0.9121             nan     0.1500    0.0904
##      6        0.8512             nan     0.1500    0.0769
##      7        0.8005             nan     0.1500    0.0634
##      8        0.7585             nan     0.1500    0.0541
##      9        0.7220             nan     0.1500    0.0393
##     10        0.6945             nan     0.1500    0.0409
##     20        0.5148             nan     0.1500    0.0092
##     40        0.3837             nan     0.1500    0.0023
##     60        0.3223             nan     0.1500   -0.0008
##     80        0.2812             nan     0.1500   -0.0002
##    100        0.2492             nan     0.1500   -0.0010
##    120        0.2231             nan     0.1500   -0.0009
##    140        0.2013             nan     0.1500   -0.0011
##    160        0.1833             nan     0.1500   -0.0009
##    180        0.1673             nan     0.1500   -0.0002
##    200        0.1538             nan     0.1500   -0.0011
##    220        0.1423             nan     0.1500   -0.0017
##    240        0.1315             nan     0.1500   -0.0014
##    260        0.1214             nan     0.1500   -0.0007
##    280        0.1124             nan     0.1500   -0.0006
##    300        0.1046             nan     0.1500   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2755
##      2        1.2093             nan     0.1500    0.1957
##      3        1.0884             nan     0.1500    0.1470
##      4        0.9944             nan     0.1500    0.1178
##      5        0.9202             nan     0.1500    0.0939
##      6        0.8598             nan     0.1500    0.0790
##      7        0.8075             nan     0.1500    0.0599
##      8        0.7663             nan     0.1500    0.0519
##      9        0.7321             nan     0.1500    0.0427
##     10        0.7018             nan     0.1500    0.0375
##     20        0.5218             nan     0.1500    0.0136
##     40        0.3887             nan     0.1500    0.0001
##     60        0.3253             nan     0.1500   -0.0000
##     80        0.2831             nan     0.1500   -0.0023
##    100        0.2531             nan     0.1500   -0.0019
##    120        0.2284             nan     0.1500   -0.0038
##    140        0.2074             nan     0.1500   -0.0006
##    160        0.1883             nan     0.1500   -0.0006
##    180        0.1729             nan     0.1500   -0.0013
##    200        0.1588             nan     0.1500   -0.0007
##    220        0.1461             nan     0.1500   -0.0011
##    240        0.1339             nan     0.1500   -0.0009
##    260        0.1237             nan     0.1500   -0.0007
##    280        0.1149             nan     0.1500   -0.0008
##    300        0.1072             nan     0.1500   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2709
##      2        1.2098             nan     0.1500    0.1983
##      3        1.0820             nan     0.1500    0.1509
##      4        0.9846             nan     0.1500    0.1079
##      5        0.9125             nan     0.1500    0.0886
##      6        0.8539             nan     0.1500    0.0716
##      7        0.8036             nan     0.1500    0.0637
##      8        0.7618             nan     0.1500    0.0531
##      9        0.7241             nan     0.1500    0.0436
##     10        0.6946             nan     0.1500    0.0417
##     20        0.5153             nan     0.1500    0.0099
##     40        0.3837             nan     0.1500    0.0020
##     60        0.3248             nan     0.1500    0.0002
##     80        0.2836             nan     0.1500   -0.0001
##    100        0.2524             nan     0.1500   -0.0012
##    120        0.2273             nan     0.1500   -0.0011
##    140        0.2056             nan     0.1500   -0.0012
##    160        0.1877             nan     0.1500   -0.0010
##    180        0.1723             nan     0.1500   -0.0015
##    200        0.1580             nan     0.1500   -0.0012
##    220        0.1462             nan     0.1500   -0.0007
##    240        0.1356             nan     0.1500   -0.0008
##    260        0.1259             nan     0.1500   -0.0011
##    280        0.1167             nan     0.1500   -0.0014
##    300        0.1087             nan     0.1500   -0.0016
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2680
##      2        1.2124             nan     0.1500    0.1943
##      3        1.0865             nan     0.1500    0.1429
##      4        0.9926             nan     0.1500    0.1184
##      5        0.9176             nan     0.1500    0.0867
##      6        0.8589             nan     0.1500    0.0781
##      7        0.8084             nan     0.1500    0.0611
##      8        0.7681             nan     0.1500    0.0537
##      9        0.7325             nan     0.1500    0.0451
##     10        0.7021             nan     0.1500    0.0429
##     20        0.5240             nan     0.1500    0.0125
##     40        0.3950             nan     0.1500    0.0010
##     60        0.3387             nan     0.1500    0.0003
##     80        0.3012             nan     0.1500   -0.0007
##    100        0.2705             nan     0.1500   -0.0019
##    120        0.2463             nan     0.1500   -0.0006
##    140        0.2263             nan     0.1500   -0.0008
##    160        0.2083             nan     0.1500   -0.0013
##    180        0.1933             nan     0.1500   -0.0009
##    200        0.1792             nan     0.1500   -0.0012
##    220        0.1661             nan     0.1500   -0.0008
##    240        0.1548             nan     0.1500   -0.0002
##    260        0.1447             nan     0.1500   -0.0006
##    280        0.1351             nan     0.1500   -0.0004
##    300        0.1269             nan     0.1500   -0.0008
gbmFit
## Stochastic Gradient Boosting 
## 
## 5998 samples
## 1162 predictors
##    4 classes: '1', '2', '3', '4' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times) 
## Summary of sample sizes: 4799, 4797, 4799, 4798, 4799 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.8551177  0.7953708  0.01298251   0.01796699
## 
## Tuning parameter 'n.trees' was held constant at a value of 300
##  2
## Tuning parameter 'shrinkage' was held constant at a value of
##  0.15
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## 
  1. Centering and scaling As mentionned this data transformation is suggested in almost all data transforming pipelines and aims to more stable computations (while also necessary to some algorithmic approaches).
Trans <- preProcess(data[,2:1163], 
           method = c("center", "scale"), 
           thresh = 0.95,
           numUnique = 3,
           verbose = TRUE)
## final pre-processing options:
## $center
##    [1] "V74"    "V78"    "V79"    "V80"    "V81"    "V82"    "V83"   
##    [8] "V84"    "V85"    "V86"    "V87"    "V88"    "V89"    "V90"   
##   [15] "V91"    "V92"    "V93"    "V94"    "V95"    "V96"    "V109"  
##   [22] "V110"   "V111"   "V112"   "V113"   "V114"   "V252"   "V258"  
##   [29] "V261"   "V262"   "V263"   "V264"   "V268"   "V269"   "V270"  
##   [36] "V283"   "V284"   "V285"   "V286"   "V287"   "V288"   "V541"  
##   [43] "V546"   "V649"   "V654"   "V679"   "V757"   "V758"   "V759"  
##   [50] "V760"   "V761"   "V775"   "V781"   "V782"   "V783"   "V784"  
##   [57] "V785"   "V786"   "V787"   "V788"   "V789"   "V790"   "V791"  
##   [64] "V792"   "V859"   "V864"   "V937"   "V938"   "V939"   "V940"  
##   [71] "V941"   "V942"   "V943"   "V944"   "V945"   "V946"   "V947"  
##   [78] "V948"   "V949"   "V950"   "V954"   "V967"   "V968"   "V969"  
##   [85] "V970"   "V971"   "V972"   "V1075"  "V1081"  "V1082"  "V1083" 
##   [92] "V1084"  "V1085"  "V1086"  "V1087"  "V1111"  "V1129"  "V1399" 
##   [99] "V1404"  "V1482"  "V1579"  "V1657"  "V1837"  "V1838"  "V1839" 
##  [106] "V1841"  "V1842"  "V2154"  "V2180"  "V2181"  "V2182"  "V2183" 
##  [113] "V2184"  "V2186"  "V2187"  "V2188"  "V2189"  "V2190"  "V2197" 
##  [120] "V2198"  "V2202"  "V2203"  "V2208"  "V2209"  "V2214"  "V2215" 
##  [127] "V2219"  "V2220"  "V2221"  "V2227"  "V2232"  "V2238"  "V2449" 
##  [134] "V2450"  "V2451"  "V2452"  "V2453"  "V2454"  "V2459"  "V2460" 
##  [141] "V2466"  "V2772"  "V2786"  "V2787"  "V2788"  "V2789"  "V2790" 
##  [148] "V2792"  "V2793"  "V2795"  "V2796"  "V2845"  "V3040"  "V3041" 
##  [155] "V3042"  "V3048"  "V3054"  "V3066"  "V3072"  "V3096"  "V3235" 
##  [162] "V3240"  "V3241"  "V3373"  "V3379"  "V3380"  "V3383"  "V3384" 
##  [169] "V3504"  "V3510"  "V3564"  "V3620"  "V3680"  "V3681"  "V3682" 
##  [176] "V3683"  "V3684"  "V3687"  "V3688"  "V3689"  "V3690"  "V3709" 
##  [183] "V3710"  "V3711"  "V3712"  "V3713"  "V3714"  "V3744"  "V3761" 
##  [190] "V3762"  "V3764"  "V3765"  "V3766"  "V3767"  "V3768"  "V3772" 
##  [197] "V3774"  "V3883"  "V3888"  "V4141"  "V4681"  "V4682"  "V4683" 
##  [204] "V4684"  "V4685"  "V4686"  "V4699"  "V4705"  "V4706"  "V4711" 
##  [211] "V4712"  "V4713"  "V4714"  "V4715"  "V4716"  "V4891"  "V4985" 
##  [218] "V4986"  "V5237"  "V5283"  "V5284"  "V5285"  "V5286"  "V5289" 
##  [225] "V5290"  "V5291"  "V5292"  "V5328"  "V5347"  "V5348"  "V5349" 
##  [232] "V5350"  "V5351"  "V5352"  "V5358"  "V5401"  "V5480"  "V5482" 
##  [239] "V5486"  "V5689"  "V5791"  "V5853"  "V5854"  "V5855"  "V5856" 
##  [246] "V6300"  "V6301"  "V6306"  "V6444"  "V6594"  "V6619"  "V6624" 
##  [253] "V6696"  "V6884"  "V6885"  "V6886"  "V6887"  "V6888"  "V6890" 
##  [260] "V6891"  "V6893"  "V6894"  "V7235"  "V7345"  "V7350"  "V7375" 
##  [267] "V7380"  "V7597"  "V7602"  "V7603"  "V7608"  "V7614"  "V7777" 
##  [274] "V7783"  "V7789"  "V7843"  "V8311"  "V8316"  "V8439"  "V8440" 
##  [281] "V8441"  "V8442"  "V8449"  "V8454"  "V8455"  "V8459"  "V8460" 
##  [288] "V8497"  "V8502"  "V8515"  "V8521"  "V8522"  "V8523"  "V8524" 
##  [295] "V8525"  "V8526"  "V8527"  "V8528"  "V8529"  "V8530"  "V8531" 
##  [302] "V8532"  "V8558"  "V8559"  "V8561"  "V8928"  "V9228"  "V9252" 
##  [309] "V9289"  "V9290"  "V9291"  "V9292"  "V9293"  "V9294"  "V9295" 
##  [316] "V9300"  "V9301"  "V9307"  "V9313"  "V9319"  "V9324"  "V9360" 
##  [323] "V9361"  "V9362"  "V9363"  "V9364"  "V9365"  "V9366"  "V9367" 
##  [330] "V9391"  "V9392"  "V9643"  "V9648"  "V9829"  "V9834"  "V9847" 
##  [337] "V9853"  "V9858"  "V9864"  "V9931"  "V9936"  "V10075" "V10117"
##  [344] "V10122" "V10141" "V10147" "V10148" "V10149" "V10150" "V10151"
##  [351] "V10152" "V10261" "V10262" "V10265" "V10266" "V10283" "V10284"
##  [358] "V10286" "V10290" "V10291" "V10296" "V10399" "V10404" "V10497"
##  [365] "V10498" "V10499" "V10549" "V10554" "V10713" "V10714" "V10715"
##  [372] "V10716" "V10719" "V10720" "V10721" "V10722" "V11058" "V11139"
##  [379] "V11140" "V11141" "V11142" "V11220" "V11224" "V11225" "V11226"
##  [386] "V11232" "V11259" "V11260" "V11261" "V11262" "V11298" "V11299"
##  [393] "V11300" "V11301" "V11302" "V11303" "V11304" "V11406" "V11407"
##  [400] "V11408" "V11410" "V11412" "V11443" "V11497" "V11503" "V11509"
##  [407] "V11513" "V11514" "V11515" "V11516" "V11517" "V11518" "V11519"
##  [414] "V11520" "V11521" "V11598" "V11700" "V11767" "V11768" "V11769"
##  [421] "V11771" "V11772" "V11880" "V11953" "V11983" "V12018" "V12030"
##  [428] "V12060" "V12193" "V12198" "V12201" "V12202" "V12203" "V12204"
##  [435] "V12420" "V12575" "V12661" "V12666" "V12667" "V12668" "V12669"
##  [442] "V12670" "V12671" "V12672" "V12781" "V12782" "V12783" "V12784"
##  [449] "V12785" "V12786" "V12787" "V12788" "V12792" "V12858" "V12877"
##  [456] "V12881" "V12882" "V12883" "V12884" "V12885" "V12886" "V12887"
##  [463] "V12888" "V12991" "V13423" "V13428" "V13466" "V13467" "V13468"
##  [470] "V13469" "V13470" "V13711" "V13722" "V13776" "V13777" "V13861"
##  [477] "V13912" "V13913" "V13917" "V13918" "V13919" "V13920" "V13927"
##  [484] "V14005" "V14113" "V14116" "V14117" "V14118" "V14119" "V14121"
##  [491] "V14122" "V14123" "V14124" "V14125" "V14128" "V14129" "V14130"
##  [498] "V14131" "V14136" "V14137" "V14142" "V14143" "V14144" "V14145"
##  [505] "V14146" "V14147" "V14148" "V14370" "V14483" "V14484" "V14921"
##  [512] "V14922" "V15012" "V15054" "V15229" "V15230" "V15233" "V15486"
##  [519] "V15504" "V15510" "V15805" "V15806" "V15807" "V15808" "V15809"
##  [526] "V15810" "V15811" "V15816" "V15822" "V15835" "V15836" "V15837"
##  [533] "V15838" "V15839" "V15840" "V16021" "V16022" "V16023" "V16024"
##  [540] "V16025" "V16026" "V16027" "V16051" "V16181" "V16182" "V16447"
##  [547] "V16451" "V16452" "V16741" "V16770" "V16771" "V16776" "V16987"
##  [554] "V16992" "V17059" "V17060" "V17061" "V17062" "V17063" "V17064"
##  [561] "V17065" "V17095" "V17100" "V17173" "V17252" "V17257" "V17258"
##  [568] "V17294" "V17369" "V17370" "V17455" "V17491" "V17568" "V17652"
##  [575] "V17658" "V17766" "V17785" "V17790" "V17815" "V17820" "V17994"
##  [582] "V18001" "V18006" "V18036" "V18072" "V18564" "V19607" "V19634"
##  [589] "V19637" "V19638" "V19643" "V19644" "V19729" "V19734" "V19759"
##  [596] "V19764" "V19867" "V19872" "V20033" "V20113" "V20114" "V20115"
##  [603] "V20116" "V20117" "V20118" "V20124" "V20233" "V20274" "V20280"
##  [610] "V20286" "V20304" "V20365" "V20366" "V20367" "V20368" "V20369"
##  [617] "V20370" "V20374" "V20375" "V20376" "V20418" "V20455" "V20456"
##  [624] "V20460" "V20479" "V20484" "V20505" "V20506" "V20507" "V20511"
##  [631] "V20512" "V20556" "V20557" "V20562" "V20587" "V20592" "V20665"
##  [638] "V20670" "V20793" "V20799" "V20839" "V20843" "V21025" "V21030"
##  [645] "V21043" "V21049" "V21054" "V21055" "V21056" "V21059" "V21060"
##  [652] "V21091" "V21106" "V21107" "V21108" "V21114" "V21163" "V21601"
##  [659] "V21606" "V21925" "V21926" "V21927" "V21928" "V21929" "V21930"
##  [666] "V21931" "V21955" "V22069" "V22093" "V22099" "V22105" "V22177"
##  [673] "V22178" "V22181" "V22182" "V22207" "V22208" "V22212" "V22321"
##  [680] "V22322" "V22323" "V22324" "V22325" "V22326" "V22327" "V22495"
##  [687] "V22645" "V22646" "V22647" "V22648" "V22649" "V22650" "V22669"
##  [694] "V22675" "V22676" "V22679" "V22680" "V22717" "V22722" "V22728"
##  [701] "V22747" "V22752" "V22802" "V22803" "V22804" "V22805" "V22806"
##  [708] "V22811" "V22812" "V22825" "V22826" "V22827" "V22828" "V22829"
##  [715] "V22830" "V22831" "V22836" "V22855" "V22860" "V22969" "V22970"
##  [722] "V22971" "V22972" "V22973" "V22974" "V23131" "V23132" "V23215"
##  [729] "V23298" "V23336" "V23337" "V23338" "V23339" "V23359" "V23360"
##  [736] "V23361" "V23362" "V23363" "V23364" "V23401" "V23534" "V23535"
##  [743] "V23536" "V23538" "V23543" "V23544" "V23559" "V23560" "V23561"
##  [750] "V23562" "V23565" "V23566" "V23567" "V23616" "V23683" "V23905"
##  [757] "V24036" "V24192" "V24276" "V24279" "V24280" "V24281" "V24282"
##  [764] "V24286" "V24287" "V24288" "V24300" "V24395" "V24583" "V24588"
##  [771] "V24990" "V25057" "V25058" "V25061" "V25062" "V25063" "V25081"
##  [778] "V25087" "V25088" "V25089" "V25092" "V25129" "V25130" "V25131"
##  [785] "V25132" "V25133" "V25134" "V25150" "V25151" "V25380" "V25458"
##  [792] "V25483" "V25488" "V25597" "V25598" "V25602" "V25699" "V25782"
##  [799] "V25807" "V25812" "V25818" "V25848" "V25874" "V25875" "V25876"
##  [806] "V25877" "V25878" "V25880" "V25881" "V25882" "V25883" "V25884"
##  [813] "V25897" "V25898" "V25899" "V25900" "V25901" "V25903" "V25904"
##  [820] "V25905" "V25906" "V25907" "V25908" "V25909" "V25910" "V25911"
##  [827] "V25912" "V25913" "V25914" "V25915" "V25916" "V25920" "V26013"
##  [834] "V26014" "V26167" "V26172" "V26218" "V26219" "V26224" "V26225"
##  [841] "V26226" "V26383" "V26388" "V26604" "V26923" "V26928" "V27019"
##  [848] "V27020" "V27026" "V27031" "V27032" "V27033" "V27034" "V27035"
##  [855] "V27036" "V27042" "V27067" "V27086" "V27091" "V27092" "V27093"
##  [862] "V27094" "V27095" "V27096" "V27098" "V27099" "V27100" "V27101"
##  [869] "V27102" "V27186" "V27191" "V27192" "V27211" "V27216" "V27324"
##  [876] "V27402" "V27684" "V27685" "V27690" "V27731" "V27734" "V27735"
##  [883] "V27736" "V27737" "V27738" "V27744" "V27829" "V27936" "V27973"
##  [890] "V27978" "V28009" "V28014" "V28044" "V28261" "V28262" "V28265"
##  [897] "V28266" "V28267" "V28285" "V28286" "V28289" "V28290" "V28291"
##  [904] "V28292" "V28293" "V28294" "V28295" "V28296" "V28446" "V28609"
##  [911] "V28610" "V28612" "V28613" "V28614" "V28615" "V28616" "V28617"
##  [918] "V28618" "V28619" "V28620" "V28621" "V28626" "V28651" "V28656"
##  [925] "V28698" "V28705" "V28711" "V28717" "V28723" "V28724" "V28725"
##  [932] "V28726" "V28727" "V28728" "V28753" "V28754" "V28755" "V28756"
##  [939] "V28757" "V28758" "V28801" "V28802" "V28806" "V28824" "V28825"
##  [946] "V28826" "V28830" "V28831" "V28836" "V28837" "V28867" "V28872"
##  [953] "V28981" "V29005" "V29011" "V29012" "V29013" "V29014" "V29015"
##  [960] "V29016" "V29078" "V29079" "V29080" "V29081" "V29082" "V29084"
##  [967] "V29085" "V29086" "V29087" "V29088" "V29160" "V29335" "V29942"
##  [974] "V29948" "V30012" "V30246" "V30396" "V30399" "V30400" "V30401"
##  [981] "V30402" "V30421" "V30422" "V30425" "V30426" "V30451" "V30853"
##  [988] "V30894" "V30919" "V30996" "V31176" "V31257" "V31258" "V31259"
##  [995] "V31260" "V31266" "V31284" "V31434" "V31440" "V31464" "V31665"
## [1002] "V31666" "V31667" "V31668" "V31848" "V31897" "V31902" "V31908"
## [1009] "V31909" "V31910" "V31914" "V31915" "V31916" "V31917" "V31918"
## [1016] "V31919" "V31920" "V31921" "V31922" "V31923" "V31924" "V31925"
## [1023] "V31926" "V31927" "V31928" "V31929" "V31930" "V31931" "V31932"
## [1030] "V31963" "V31968" "V31999" "V32000" "V32001" "V32002" "V32003"
## [1037] "V32004" "V32005" "V32035" "V32102" "V32103" "V32104" "V32105"
## [1044] "V32293" "V32298" "V32299" "V32303" "V32304" "V32305" "V32317"
## [1051] "V32323" "V32365" "V32370" "V32395" "V32400" "V32622" "V32689"
## [1058] "V32690" "V32691" "V32692" "V32693" "V32694" "V32725" "V32771"
## [1065] "V32772" "V32778" "V32904" "V33234" "V33240" "V33259" "V33301"
## [1072] "V33306" "V33481" "V33487" "V33511" "V33589" "V33594" "V33618"
## [1079] "V33619" "V33623" "V33624" "V33769" "V33770" "V33774" "V33787"
## [1086] "V33793" "V33799" "V33800" "V33804" "V33841" "V33846" "V33866"
## [1093] "V33870" "V33872" "V33873" "V33874" "V33875" "V33876" "V33882"
## [1100] "V34201" "V34494" "V34518" "V34524" "V34950" "V34951" "V34952"
## [1107] "V34956" "V34993" "V35029" "V35030" "V35031" "V35032" "V35033"
## [1114] "V35034" "V35059" "V35064" "V35095" "V35209" "V35215" "V35233"
## [1121] "V35239" "V35240" "V35241" "V35242" "V35243" "V35244" "V35508"
## [1128] "V35510" "V35511" "V35512" "V35513" "V35514" "V35517" "V35518"
## [1135] "V35519" "V35520" "V35527" "V35881" "V35887" "V35892" "V36119"
## [1142] "V36120" "V36123" "V36124" "V36125" "V36126" "V36145" "V36150"
## [1149] "V36205" "V36499" "V36582" "V36607" "V36689" "V36690" "V36727"
## [1156] "V36745" "V36751" "V36752" "V36753" "V36754" "V36755" "V36756"
## 
## $scale
##    [1] "V74"    "V78"    "V79"    "V80"    "V81"    "V82"    "V83"   
##    [8] "V84"    "V85"    "V86"    "V87"    "V88"    "V89"    "V90"   
##   [15] "V91"    "V92"    "V93"    "V94"    "V95"    "V96"    "V109"  
##   [22] "V110"   "V111"   "V112"   "V113"   "V114"   "V252"   "V258"  
##   [29] "V261"   "V262"   "V263"   "V264"   "V268"   "V269"   "V270"  
##   [36] "V283"   "V284"   "V285"   "V286"   "V287"   "V288"   "V541"  
##   [43] "V546"   "V649"   "V654"   "V679"   "V757"   "V758"   "V759"  
##   [50] "V760"   "V761"   "V775"   "V781"   "V782"   "V783"   "V784"  
##   [57] "V785"   "V786"   "V787"   "V788"   "V789"   "V790"   "V791"  
##   [64] "V792"   "V859"   "V864"   "V937"   "V938"   "V939"   "V940"  
##   [71] "V941"   "V942"   "V943"   "V944"   "V945"   "V946"   "V947"  
##   [78] "V948"   "V949"   "V950"   "V954"   "V967"   "V968"   "V969"  
##   [85] "V970"   "V971"   "V972"   "V1075"  "V1081"  "V1082"  "V1083" 
##   [92] "V1084"  "V1085"  "V1086"  "V1087"  "V1111"  "V1129"  "V1399" 
##   [99] "V1404"  "V1482"  "V1579"  "V1657"  "V1837"  "V1838"  "V1839" 
##  [106] "V1841"  "V1842"  "V2154"  "V2180"  "V2181"  "V2182"  "V2183" 
##  [113] "V2184"  "V2186"  "V2187"  "V2188"  "V2189"  "V2190"  "V2197" 
##  [120] "V2198"  "V2202"  "V2203"  "V2208"  "V2209"  "V2214"  "V2215" 
##  [127] "V2219"  "V2220"  "V2221"  "V2227"  "V2232"  "V2238"  "V2449" 
##  [134] "V2450"  "V2451"  "V2452"  "V2453"  "V2454"  "V2459"  "V2460" 
##  [141] "V2466"  "V2772"  "V2786"  "V2787"  "V2788"  "V2789"  "V2790" 
##  [148] "V2792"  "V2793"  "V2795"  "V2796"  "V2845"  "V3040"  "V3041" 
##  [155] "V3042"  "V3048"  "V3054"  "V3066"  "V3072"  "V3096"  "V3235" 
##  [162] "V3240"  "V3241"  "V3373"  "V3379"  "V3380"  "V3383"  "V3384" 
##  [169] "V3504"  "V3510"  "V3564"  "V3620"  "V3680"  "V3681"  "V3682" 
##  [176] "V3683"  "V3684"  "V3687"  "V3688"  "V3689"  "V3690"  "V3709" 
##  [183] "V3710"  "V3711"  "V3712"  "V3713"  "V3714"  "V3744"  "V3761" 
##  [190] "V3762"  "V3764"  "V3765"  "V3766"  "V3767"  "V3768"  "V3772" 
##  [197] "V3774"  "V3883"  "V3888"  "V4141"  "V4681"  "V4682"  "V4683" 
##  [204] "V4684"  "V4685"  "V4686"  "V4699"  "V4705"  "V4706"  "V4711" 
##  [211] "V4712"  "V4713"  "V4714"  "V4715"  "V4716"  "V4891"  "V4985" 
##  [218] "V4986"  "V5237"  "V5283"  "V5284"  "V5285"  "V5286"  "V5289" 
##  [225] "V5290"  "V5291"  "V5292"  "V5328"  "V5347"  "V5348"  "V5349" 
##  [232] "V5350"  "V5351"  "V5352"  "V5358"  "V5401"  "V5480"  "V5482" 
##  [239] "V5486"  "V5689"  "V5791"  "V5853"  "V5854"  "V5855"  "V5856" 
##  [246] "V6300"  "V6301"  "V6306"  "V6444"  "V6594"  "V6619"  "V6624" 
##  [253] "V6696"  "V6884"  "V6885"  "V6886"  "V6887"  "V6888"  "V6890" 
##  [260] "V6891"  "V6893"  "V6894"  "V7235"  "V7345"  "V7350"  "V7375" 
##  [267] "V7380"  "V7597"  "V7602"  "V7603"  "V7608"  "V7614"  "V7777" 
##  [274] "V7783"  "V7789"  "V7843"  "V8311"  "V8316"  "V8439"  "V8440" 
##  [281] "V8441"  "V8442"  "V8449"  "V8454"  "V8455"  "V8459"  "V8460" 
##  [288] "V8497"  "V8502"  "V8515"  "V8521"  "V8522"  "V8523"  "V8524" 
##  [295] "V8525"  "V8526"  "V8527"  "V8528"  "V8529"  "V8530"  "V8531" 
##  [302] "V8532"  "V8558"  "V8559"  "V8561"  "V8928"  "V9228"  "V9252" 
##  [309] "V9289"  "V9290"  "V9291"  "V9292"  "V9293"  "V9294"  "V9295" 
##  [316] "V9300"  "V9301"  "V9307"  "V9313"  "V9319"  "V9324"  "V9360" 
##  [323] "V9361"  "V9362"  "V9363"  "V9364"  "V9365"  "V9366"  "V9367" 
##  [330] "V9391"  "V9392"  "V9643"  "V9648"  "V9829"  "V9834"  "V9847" 
##  [337] "V9853"  "V9858"  "V9864"  "V9931"  "V9936"  "V10075" "V10117"
##  [344] "V10122" "V10141" "V10147" "V10148" "V10149" "V10150" "V10151"
##  [351] "V10152" "V10261" "V10262" "V10265" "V10266" "V10283" "V10284"
##  [358] "V10286" "V10290" "V10291" "V10296" "V10399" "V10404" "V10497"
##  [365] "V10498" "V10499" "V10549" "V10554" "V10713" "V10714" "V10715"
##  [372] "V10716" "V10719" "V10720" "V10721" "V10722" "V11058" "V11139"
##  [379] "V11140" "V11141" "V11142" "V11220" "V11224" "V11225" "V11226"
##  [386] "V11232" "V11259" "V11260" "V11261" "V11262" "V11298" "V11299"
##  [393] "V11300" "V11301" "V11302" "V11303" "V11304" "V11406" "V11407"
##  [400] "V11408" "V11410" "V11412" "V11443" "V11497" "V11503" "V11509"
##  [407] "V11513" "V11514" "V11515" "V11516" "V11517" "V11518" "V11519"
##  [414] "V11520" "V11521" "V11598" "V11700" "V11767" "V11768" "V11769"
##  [421] "V11771" "V11772" "V11880" "V11953" "V11983" "V12018" "V12030"
##  [428] "V12060" "V12193" "V12198" "V12201" "V12202" "V12203" "V12204"
##  [435] "V12420" "V12575" "V12661" "V12666" "V12667" "V12668" "V12669"
##  [442] "V12670" "V12671" "V12672" "V12781" "V12782" "V12783" "V12784"
##  [449] "V12785" "V12786" "V12787" "V12788" "V12792" "V12858" "V12877"
##  [456] "V12881" "V12882" "V12883" "V12884" "V12885" "V12886" "V12887"
##  [463] "V12888" "V12991" "V13423" "V13428" "V13466" "V13467" "V13468"
##  [470] "V13469" "V13470" "V13711" "V13722" "V13776" "V13777" "V13861"
##  [477] "V13912" "V13913" "V13917" "V13918" "V13919" "V13920" "V13927"
##  [484] "V14005" "V14113" "V14116" "V14117" "V14118" "V14119" "V14121"
##  [491] "V14122" "V14123" "V14124" "V14125" "V14128" "V14129" "V14130"
##  [498] "V14131" "V14136" "V14137" "V14142" "V14143" "V14144" "V14145"
##  [505] "V14146" "V14147" "V14148" "V14370" "V14483" "V14484" "V14921"
##  [512] "V14922" "V15012" "V15054" "V15229" "V15230" "V15233" "V15486"
##  [519] "V15504" "V15510" "V15805" "V15806" "V15807" "V15808" "V15809"
##  [526] "V15810" "V15811" "V15816" "V15822" "V15835" "V15836" "V15837"
##  [533] "V15838" "V15839" "V15840" "V16021" "V16022" "V16023" "V16024"
##  [540] "V16025" "V16026" "V16027" "V16051" "V16181" "V16182" "V16447"
##  [547] "V16451" "V16452" "V16741" "V16770" "V16771" "V16776" "V16987"
##  [554] "V16992" "V17059" "V17060" "V17061" "V17062" "V17063" "V17064"
##  [561] "V17065" "V17095" "V17100" "V17173" "V17252" "V17257" "V17258"
##  [568] "V17294" "V17369" "V17370" "V17455" "V17491" "V17568" "V17652"
##  [575] "V17658" "V17766" "V17785" "V17790" "V17815" "V17820" "V17994"
##  [582] "V18001" "V18006" "V18036" "V18072" "V18564" "V19607" "V19634"
##  [589] "V19637" "V19638" "V19643" "V19644" "V19729" "V19734" "V19759"
##  [596] "V19764" "V19867" "V19872" "V20033" "V20113" "V20114" "V20115"
##  [603] "V20116" "V20117" "V20118" "V20124" "V20233" "V20274" "V20280"
##  [610] "V20286" "V20304" "V20365" "V20366" "V20367" "V20368" "V20369"
##  [617] "V20370" "V20374" "V20375" "V20376" "V20418" "V20455" "V20456"
##  [624] "V20460" "V20479" "V20484" "V20505" "V20506" "V20507" "V20511"
##  [631] "V20512" "V20556" "V20557" "V20562" "V20587" "V20592" "V20665"
##  [638] "V20670" "V20793" "V20799" "V20839" "V20843" "V21025" "V21030"
##  [645] "V21043" "V21049" "V21054" "V21055" "V21056" "V21059" "V21060"
##  [652] "V21091" "V21106" "V21107" "V21108" "V21114" "V21163" "V21601"
##  [659] "V21606" "V21925" "V21926" "V21927" "V21928" "V21929" "V21930"
##  [666] "V21931" "V21955" "V22069" "V22093" "V22099" "V22105" "V22177"
##  [673] "V22178" "V22181" "V22182" "V22207" "V22208" "V22212" "V22321"
##  [680] "V22322" "V22323" "V22324" "V22325" "V22326" "V22327" "V22495"
##  [687] "V22645" "V22646" "V22647" "V22648" "V22649" "V22650" "V22669"
##  [694] "V22675" "V22676" "V22679" "V22680" "V22717" "V22722" "V22728"
##  [701] "V22747" "V22752" "V22802" "V22803" "V22804" "V22805" "V22806"
##  [708] "V22811" "V22812" "V22825" "V22826" "V22827" "V22828" "V22829"
##  [715] "V22830" "V22831" "V22836" "V22855" "V22860" "V22969" "V22970"
##  [722] "V22971" "V22972" "V22973" "V22974" "V23131" "V23132" "V23215"
##  [729] "V23298" "V23336" "V23337" "V23338" "V23339" "V23359" "V23360"
##  [736] "V23361" "V23362" "V23363" "V23364" "V23401" "V23534" "V23535"
##  [743] "V23536" "V23538" "V23543" "V23544" "V23559" "V23560" "V23561"
##  [750] "V23562" "V23565" "V23566" "V23567" "V23616" "V23683" "V23905"
##  [757] "V24036" "V24192" "V24276" "V24279" "V24280" "V24281" "V24282"
##  [764] "V24286" "V24287" "V24288" "V24300" "V24395" "V24583" "V24588"
##  [771] "V24990" "V25057" "V25058" "V25061" "V25062" "V25063" "V25081"
##  [778] "V25087" "V25088" "V25089" "V25092" "V25129" "V25130" "V25131"
##  [785] "V25132" "V25133" "V25134" "V25150" "V25151" "V25380" "V25458"
##  [792] "V25483" "V25488" "V25597" "V25598" "V25602" "V25699" "V25782"
##  [799] "V25807" "V25812" "V25818" "V25848" "V25874" "V25875" "V25876"
##  [806] "V25877" "V25878" "V25880" "V25881" "V25882" "V25883" "V25884"
##  [813] "V25897" "V25898" "V25899" "V25900" "V25901" "V25903" "V25904"
##  [820] "V25905" "V25906" "V25907" "V25908" "V25909" "V25910" "V25911"
##  [827] "V25912" "V25913" "V25914" "V25915" "V25916" "V25920" "V26013"
##  [834] "V26014" "V26167" "V26172" "V26218" "V26219" "V26224" "V26225"
##  [841] "V26226" "V26383" "V26388" "V26604" "V26923" "V26928" "V27019"
##  [848] "V27020" "V27026" "V27031" "V27032" "V27033" "V27034" "V27035"
##  [855] "V27036" "V27042" "V27067" "V27086" "V27091" "V27092" "V27093"
##  [862] "V27094" "V27095" "V27096" "V27098" "V27099" "V27100" "V27101"
##  [869] "V27102" "V27186" "V27191" "V27192" "V27211" "V27216" "V27324"
##  [876] "V27402" "V27684" "V27685" "V27690" "V27731" "V27734" "V27735"
##  [883] "V27736" "V27737" "V27738" "V27744" "V27829" "V27936" "V27973"
##  [890] "V27978" "V28009" "V28014" "V28044" "V28261" "V28262" "V28265"
##  [897] "V28266" "V28267" "V28285" "V28286" "V28289" "V28290" "V28291"
##  [904] "V28292" "V28293" "V28294" "V28295" "V28296" "V28446" "V28609"
##  [911] "V28610" "V28612" "V28613" "V28614" "V28615" "V28616" "V28617"
##  [918] "V28618" "V28619" "V28620" "V28621" "V28626" "V28651" "V28656"
##  [925] "V28698" "V28705" "V28711" "V28717" "V28723" "V28724" "V28725"
##  [932] "V28726" "V28727" "V28728" "V28753" "V28754" "V28755" "V28756"
##  [939] "V28757" "V28758" "V28801" "V28802" "V28806" "V28824" "V28825"
##  [946] "V28826" "V28830" "V28831" "V28836" "V28837" "V28867" "V28872"
##  [953] "V28981" "V29005" "V29011" "V29012" "V29013" "V29014" "V29015"
##  [960] "V29016" "V29078" "V29079" "V29080" "V29081" "V29082" "V29084"
##  [967] "V29085" "V29086" "V29087" "V29088" "V29160" "V29335" "V29942"
##  [974] "V29948" "V30012" "V30246" "V30396" "V30399" "V30400" "V30401"
##  [981] "V30402" "V30421" "V30422" "V30425" "V30426" "V30451" "V30853"
##  [988] "V30894" "V30919" "V30996" "V31176" "V31257" "V31258" "V31259"
##  [995] "V31260" "V31266" "V31284" "V31434" "V31440" "V31464" "V31665"
## [1002] "V31666" "V31667" "V31668" "V31848" "V31897" "V31902" "V31908"
## [1009] "V31909" "V31910" "V31914" "V31915" "V31916" "V31917" "V31918"
## [1016] "V31919" "V31920" "V31921" "V31922" "V31923" "V31924" "V31925"
## [1023] "V31926" "V31927" "V31928" "V31929" "V31930" "V31931" "V31932"
## [1030] "V31963" "V31968" "V31999" "V32000" "V32001" "V32002" "V32003"
## [1037] "V32004" "V32005" "V32035" "V32102" "V32103" "V32104" "V32105"
## [1044] "V32293" "V32298" "V32299" "V32303" "V32304" "V32305" "V32317"
## [1051] "V32323" "V32365" "V32370" "V32395" "V32400" "V32622" "V32689"
## [1058] "V32690" "V32691" "V32692" "V32693" "V32694" "V32725" "V32771"
## [1065] "V32772" "V32778" "V32904" "V33234" "V33240" "V33259" "V33301"
## [1072] "V33306" "V33481" "V33487" "V33511" "V33589" "V33594" "V33618"
## [1079] "V33619" "V33623" "V33624" "V33769" "V33770" "V33774" "V33787"
## [1086] "V33793" "V33799" "V33800" "V33804" "V33841" "V33846" "V33866"
## [1093] "V33870" "V33872" "V33873" "V33874" "V33875" "V33876" "V33882"
## [1100] "V34201" "V34494" "V34518" "V34524" "V34950" "V34951" "V34952"
## [1107] "V34956" "V34993" "V35029" "V35030" "V35031" "V35032" "V35033"
## [1114] "V35034" "V35059" "V35064" "V35095" "V35209" "V35215" "V35233"
## [1121] "V35239" "V35240" "V35241" "V35242" "V35243" "V35244" "V35508"
## [1128] "V35510" "V35511" "V35512" "V35513" "V35514" "V35517" "V35518"
## [1135] "V35519" "V35520" "V35527" "V35881" "V35887" "V35892" "V36119"
## [1142] "V36120" "V36123" "V36124" "V36125" "V36126" "V36145" "V36150"
## [1149] "V36205" "V36499" "V36582" "V36607" "V36689" "V36690" "V36727"
## [1156] "V36745" "V36751" "V36752" "V36753" "V36754" "V36755" "V36756"
## 
## $ignore
## character(0)
## 
## 
## Calculating 1162 means for centering
## Calculating 1162 standard deviations for scaling
data[,2:1163] <- predict(Trans,data[2:1163])
data <- cbind(data[,1],data[,2:1163])
names(data)[1] <- "V1"


gbmFit_SC <- train(V1~., data = data,
                method = "gbm",
                trControl = fitControl,
                verbose = TRUE,
                tuneGrid = gbmGrid)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2769
##      2        1.2056             nan     0.1500    0.1879
##      3        1.0827             nan     0.1500    0.1469
##      4        0.9866             nan     0.1500    0.1125
##      5        0.9133             nan     0.1500    0.0940
##      6        0.8524             nan     0.1500    0.0796
##      7        0.7998             nan     0.1500    0.0623
##      8        0.7571             nan     0.1500    0.0541
##      9        0.7206             nan     0.1500    0.0512
##     10        0.6880             nan     0.1500    0.0377
##     20        0.5084             nan     0.1500    0.0130
##     40        0.3787             nan     0.1500    0.0011
##     60        0.3198             nan     0.1500   -0.0007
##     80        0.2782             nan     0.1500   -0.0021
##    100        0.2477             nan     0.1500   -0.0014
##    120        0.2252             nan     0.1500   -0.0019
##    140        0.2039             nan     0.1500   -0.0009
##    160        0.1858             nan     0.1500   -0.0015
##    180        0.1695             nan     0.1500   -0.0006
##    200        0.1553             nan     0.1500   -0.0009
##    220        0.1431             nan     0.1500   -0.0008
##    240        0.1320             nan     0.1500   -0.0010
##    260        0.1224             nan     0.1500   -0.0012
##    280        0.1135             nan     0.1500   -0.0009
##    300        0.1055             nan     0.1500   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2761
##      2        1.2053             nan     0.1500    0.1858
##      3        1.0878             nan     0.1500    0.1509
##      4        0.9926             nan     0.1500    0.1133
##      5        0.9191             nan     0.1500    0.0983
##      6        0.8564             nan     0.1500    0.0736
##      7        0.8078             nan     0.1500    0.0648
##      8        0.7657             nan     0.1500    0.0567
##      9        0.7283             nan     0.1500    0.0478
##     10        0.6967             nan     0.1500    0.0407
##     20        0.5183             nan     0.1500    0.0123
##     40        0.3853             nan     0.1500    0.0022
##     60        0.3276             nan     0.1500    0.0007
##     80        0.2882             nan     0.1500   -0.0007
##    100        0.2564             nan     0.1500   -0.0007
##    120        0.2315             nan     0.1500   -0.0014
##    140        0.2105             nan     0.1500   -0.0017
##    160        0.1922             nan     0.1500   -0.0011
##    180        0.1766             nan     0.1500   -0.0009
##    200        0.1618             nan     0.1500   -0.0008
##    220        0.1495             nan     0.1500   -0.0007
##    240        0.1371             nan     0.1500   -0.0006
##    260        0.1269             nan     0.1500   -0.0008
##    280        0.1179             nan     0.1500   -0.0007
##    300        0.1092             nan     0.1500   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2708
##      2        1.2089             nan     0.1500    0.1959
##      3        1.0861             nan     0.1500    0.1509
##      4        0.9876             nan     0.1500    0.1153
##      5        0.9115             nan     0.1500    0.0924
##      6        0.8513             nan     0.1500    0.0679
##      7        0.8042             nan     0.1500    0.0624
##      8        0.7638             nan     0.1500    0.0525
##      9        0.7270             nan     0.1500    0.0438
##     10        0.6968             nan     0.1500    0.0393
##     20        0.5121             nan     0.1500    0.0123
##     40        0.3824             nan     0.1500    0.0020
##     60        0.3211             nan     0.1500   -0.0011
##     80        0.2812             nan     0.1500   -0.0007
##    100        0.2492             nan     0.1500   -0.0011
##    120        0.2243             nan     0.1500   -0.0006
##    140        0.2038             nan     0.1500   -0.0015
##    160        0.1837             nan     0.1500   -0.0006
##    180        0.1665             nan     0.1500   -0.0011
##    200        0.1536             nan     0.1500   -0.0013
##    220        0.1412             nan     0.1500   -0.0006
##    240        0.1304             nan     0.1500   -0.0014
##    260        0.1202             nan     0.1500   -0.0006
##    280        0.1115             nan     0.1500   -0.0009
##    300        0.1046             nan     0.1500   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2779
##      2        1.2067             nan     0.1500    0.1868
##      3        1.0845             nan     0.1500    0.1460
##      4        0.9888             nan     0.1500    0.1185
##      5        0.9113             nan     0.1500    0.0950
##      6        0.8503             nan     0.1500    0.0752
##      7        0.8004             nan     0.1500    0.0597
##      8        0.7592             nan     0.1500    0.0528
##      9        0.7218             nan     0.1500    0.0490
##     10        0.6899             nan     0.1500    0.0395
##     20        0.5136             nan     0.1500    0.0122
##     40        0.3850             nan     0.1500    0.0019
##     60        0.3257             nan     0.1500   -0.0000
##     80        0.2844             nan     0.1500   -0.0013
##    100        0.2538             nan     0.1500   -0.0013
##    120        0.2266             nan     0.1500   -0.0005
##    140        0.2055             nan     0.1500   -0.0005
##    160        0.1861             nan     0.1500   -0.0009
##    180        0.1700             nan     0.1500   -0.0009
##    200        0.1557             nan     0.1500   -0.0009
##    220        0.1437             nan     0.1500   -0.0014
##    240        0.1328             nan     0.1500   -0.0006
##    260        0.1231             nan     0.1500   -0.0009
##    280        0.1143             nan     0.1500   -0.0005
##    300        0.1067             nan     0.1500   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2649
##      2        1.2091             nan     0.1500    0.1895
##      3        1.0882             nan     0.1500    0.1479
##      4        0.9941             nan     0.1500    0.1195
##      5        0.9178             nan     0.1500    0.0902
##      6        0.8573             nan     0.1500    0.0765
##      7        0.8069             nan     0.1500    0.0567
##      8        0.7682             nan     0.1500    0.0508
##      9        0.7327             nan     0.1500    0.0435
##     10        0.7009             nan     0.1500    0.0376
##     20        0.5228             nan     0.1500    0.0154
##     40        0.3860             nan     0.1500    0.0009
##     60        0.3259             nan     0.1500    0.0009
##     80        0.2842             nan     0.1500    0.0000
##    100        0.2513             nan     0.1500   -0.0014
##    120        0.2255             nan     0.1500   -0.0014
##    140        0.2043             nan     0.1500   -0.0003
##    160        0.1857             nan     0.1500   -0.0006
##    180        0.1691             nan     0.1500   -0.0015
##    200        0.1547             nan     0.1500   -0.0010
##    220        0.1430             nan     0.1500   -0.0014
##    240        0.1323             nan     0.1500   -0.0005
##    260        0.1226             nan     0.1500   -0.0009
##    280        0.1133             nan     0.1500   -0.0007
##    300        0.1048             nan     0.1500   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2780
##      2        1.2109             nan     0.1500    0.1980
##      3        1.0855             nan     0.1500    0.1437
##      4        0.9908             nan     0.1500    0.1146
##      5        0.9157             nan     0.1500    0.0942
##      6        0.8562             nan     0.1500    0.0766
##      7        0.8068             nan     0.1500    0.0634
##      8        0.7662             nan     0.1500    0.0534
##      9        0.7314             nan     0.1500    0.0449
##     10        0.7023             nan     0.1500    0.0435
##     20        0.5223             nan     0.1500    0.0117
##     40        0.3953             nan     0.1500    0.0003
##     60        0.3355             nan     0.1500    0.0004
##     80        0.2974             nan     0.1500   -0.0009
##    100        0.2690             nan     0.1500   -0.0013
##    120        0.2451             nan     0.1500   -0.0018
##    140        0.2248             nan     0.1500   -0.0006
##    160        0.2072             nan     0.1500   -0.0013
##    180        0.1920             nan     0.1500   -0.0010
##    200        0.1779             nan     0.1500   -0.0008
##    220        0.1656             nan     0.1500   -0.0014
##    240        0.1541             nan     0.1500   -0.0012
##    260        0.1442             nan     0.1500   -0.0011
##    280        0.1348             nan     0.1500   -0.0004
##    300        0.1263             nan     0.1500   -0.0007
gbmFit_SC
## Stochastic Gradient Boosting 
## 
## 5998 samples
## 1162 predictors
##    4 classes: '1', '2', '3', '4' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times) 
## Summary of sample sizes: 4799, 4799, 4797, 4800, 4797 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD   
##   0.8529496  0.7922083  0.004334312  0.006126696
## 
## Tuning parameter 'n.trees' was held constant at a value of 300
##  2
## Tuning parameter 'shrinkage' was held constant at a value of
##  0.15
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## 

No significant improvement was noticed. Performance of models remained within standard deviations limits.

  1. Transformations to account for skewness.
skewness <- lapply(data[,2:1163],skewness)
skewness <- as.data.frame(as.matrix(skewness))
if (length(skewness$V1>2)==1162){
  print("All variables are skewed, and could do with BoxCox transformation, dont you think?")
}
## [1] "All variables are skewed, and could do with BoxCox transformation, dont you think?"

It was observed that all variables present significant skewdness. BoxCox transformation can be applied. A GBM with same parameter tuning is applied to check for the transformation effect.

system.time(for (i in 2:1163){
  skewness(data[,i])
  Trans <- BoxCoxTrans(data[,i])
  data[,i] <- predict(Trans,data[,i])})
##    user  system elapsed 
##    3.81    0.05    4.07
gbmFit_BC <- train(V1~., data = data,
                method = "gbm",
                trControl = fitControl,
                verbose = TRUE,
                tuneGrid = gbmGrid)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2813
##      2        1.2087             nan     0.1500    0.1949
##      3        1.0814             nan     0.1500    0.1500
##      4        0.9844             nan     0.1500    0.1135
##      5        0.9100             nan     0.1500    0.0974
##      6        0.8478             nan     0.1500    0.0734
##      7        0.7987             nan     0.1500    0.0629
##      8        0.7557             nan     0.1500    0.0548
##      9        0.7175             nan     0.1500    0.0415
##     10        0.6879             nan     0.1500    0.0364
##     20        0.5065             nan     0.1500    0.0121
##     40        0.3776             nan     0.1500    0.0018
##     60        0.3160             nan     0.1500    0.0005
##     80        0.2765             nan     0.1500   -0.0008
##    100        0.2466             nan     0.1500   -0.0007
##    120        0.2214             nan     0.1500   -0.0007
##    140        0.2008             nan     0.1500   -0.0011
##    160        0.1839             nan     0.1500   -0.0019
##    180        0.1691             nan     0.1500   -0.0017
##    200        0.1550             nan     0.1500   -0.0009
##    220        0.1434             nan     0.1500   -0.0006
##    240        0.1322             nan     0.1500   -0.0010
##    260        0.1228             nan     0.1500   -0.0006
##    280        0.1137             nan     0.1500   -0.0006
##    300        0.1054             nan     0.1500   -0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2797
##      2        1.2049             nan     0.1500    0.1960
##      3        1.0809             nan     0.1500    0.1443
##      4        0.9872             nan     0.1500    0.1148
##      5        0.9120             nan     0.1500    0.0920
##      6        0.8526             nan     0.1500    0.0747
##      7        0.8021             nan     0.1500    0.0560
##      8        0.7627             nan     0.1500    0.0529
##      9        0.7263             nan     0.1500    0.0434
##     10        0.6955             nan     0.1500    0.0420
##     20        0.5140             nan     0.1500    0.0103
##     40        0.3823             nan     0.1500    0.0020
##     60        0.3227             nan     0.1500   -0.0010
##     80        0.2826             nan     0.1500   -0.0014
##    100        0.2505             nan     0.1500   -0.0017
##    120        0.2266             nan     0.1500   -0.0018
##    140        0.2062             nan     0.1500   -0.0010
##    160        0.1874             nan     0.1500   -0.0005
##    180        0.1712             nan     0.1500   -0.0008
##    200        0.1570             nan     0.1500   -0.0006
##    220        0.1434             nan     0.1500   -0.0013
##    240        0.1316             nan     0.1500   -0.0012
##    260        0.1225             nan     0.1500   -0.0006
##    280        0.1142             nan     0.1500   -0.0004
##    300        0.1057             nan     0.1500   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2579
##      2        1.2154             nan     0.1500    0.1985
##      3        1.0887             nan     0.1500    0.1498
##      4        0.9912             nan     0.1500    0.1166
##      5        0.9161             nan     0.1500    0.0964
##      6        0.8539             nan     0.1500    0.0738
##      7        0.8048             nan     0.1500    0.0608
##      8        0.7635             nan     0.1500    0.0497
##      9        0.7293             nan     0.1500    0.0465
##     10        0.6963             nan     0.1500    0.0385
##     20        0.5128             nan     0.1500    0.0112
##     40        0.3825             nan     0.1500    0.0008
##     60        0.3202             nan     0.1500   -0.0017
##     80        0.2822             nan     0.1500   -0.0007
##    100        0.2510             nan     0.1500   -0.0013
##    120        0.2256             nan     0.1500   -0.0011
##    140        0.2035             nan     0.1500   -0.0003
##    160        0.1850             nan     0.1500   -0.0013
##    180        0.1698             nan     0.1500   -0.0009
##    200        0.1566             nan     0.1500   -0.0011
##    220        0.1447             nan     0.1500   -0.0010
##    240        0.1337             nan     0.1500   -0.0005
##    260        0.1232             nan     0.1500   -0.0007
##    280        0.1139             nan     0.1500   -0.0008
##    300        0.1061             nan     0.1500   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2807
##      2        1.2092             nan     0.1500    0.1963
##      3        1.0817             nan     0.1500    0.1467
##      4        0.9856             nan     0.1500    0.1161
##      5        0.9087             nan     0.1500    0.0843
##      6        0.8490             nan     0.1500    0.0681
##      7        0.8012             nan     0.1500    0.0637
##      8        0.7592             nan     0.1500    0.0552
##      9        0.7223             nan     0.1500    0.0474
##     10        0.6899             nan     0.1500    0.0409
##     20        0.5097             nan     0.1500    0.0122
##     40        0.3797             nan     0.1500   -0.0007
##     60        0.3212             nan     0.1500   -0.0002
##     80        0.2777             nan     0.1500   -0.0008
##    100        0.2463             nan     0.1500   -0.0005
##    120        0.2212             nan     0.1500   -0.0008
##    140        0.2001             nan     0.1500   -0.0016
##    160        0.1806             nan     0.1500   -0.0011
##    180        0.1654             nan     0.1500   -0.0010
##    200        0.1508             nan     0.1500   -0.0007
##    220        0.1390             nan     0.1500   -0.0007
##    240        0.1283             nan     0.1500   -0.0007
##    260        0.1195             nan     0.1500   -0.0005
##    280        0.1109             nan     0.1500   -0.0006
##    300        0.1031             nan     0.1500   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2694
##      2        1.2126             nan     0.1500    0.1878
##      3        1.0895             nan     0.1500    0.1498
##      4        0.9943             nan     0.1500    0.1153
##      5        0.9197             nan     0.1500    0.0935
##      6        0.8601             nan     0.1500    0.0758
##      7        0.8107             nan     0.1500    0.0602
##      8        0.7695             nan     0.1500    0.0512
##      9        0.7339             nan     0.1500    0.0449
##     10        0.7026             nan     0.1500    0.0376
##     20        0.5249             nan     0.1500    0.0124
##     40        0.3964             nan     0.1500    0.0003
##     60        0.3358             nan     0.1500    0.0002
##     80        0.2926             nan     0.1500   -0.0011
##    100        0.2620             nan     0.1500   -0.0016
##    120        0.2352             nan     0.1500   -0.0015
##    140        0.2140             nan     0.1500   -0.0007
##    160        0.1944             nan     0.1500   -0.0013
##    180        0.1773             nan     0.1500   -0.0012
##    200        0.1635             nan     0.1500   -0.0016
##    220        0.1503             nan     0.1500   -0.0011
##    240        0.1388             nan     0.1500   -0.0009
##    260        0.1297             nan     0.1500   -0.0009
##    280        0.1199             nan     0.1500   -0.0004
##    300        0.1121             nan     0.1500   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2768
##      2        1.2123             nan     0.1500    0.1996
##      3        1.0870             nan     0.1500    0.1493
##      4        0.9915             nan     0.1500    0.1140
##      5        0.9168             nan     0.1500    0.0900
##      6        0.8569             nan     0.1500    0.0706
##      7        0.8079             nan     0.1500    0.0600
##      8        0.7678             nan     0.1500    0.0540
##      9        0.7328             nan     0.1500    0.0459
##     10        0.7028             nan     0.1500    0.0432
##     20        0.5253             nan     0.1500    0.0112
##     40        0.3968             nan     0.1500   -0.0000
##     60        0.3382             nan     0.1500    0.0002
##     80        0.2981             nan     0.1500   -0.0016
##    100        0.2694             nan     0.1500   -0.0007
##    120        0.2461             nan     0.1500   -0.0007
##    140        0.2267             nan     0.1500   -0.0009
##    160        0.2072             nan     0.1500   -0.0007
##    180        0.1914             nan     0.1500   -0.0008
##    200        0.1774             nan     0.1500   -0.0011
##    220        0.1653             nan     0.1500   -0.0006
##    240        0.1540             nan     0.1500   -0.0008
##    260        0.1435             nan     0.1500   -0.0006
##    280        0.1343             nan     0.1500   -0.0005
##    300        0.1263             nan     0.1500   -0.0009
gbmFit_BC
## Stochastic Gradient Boosting 
## 
## 5998 samples
## 1162 predictors
##    4 classes: '1', '2', '3', '4' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times) 
## Summary of sample sizes: 4797, 4797, 4799, 4800, 4799 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.8514479  0.7901417  0.01437934   0.02041485
## 
## Tuning parameter 'n.trees' was held constant at a value of 300
##  2
## Tuning parameter 'shrinkage' was held constant at a value of
##  0.15
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## 

Accuracy has slightly improved to 0.8541204 +/- SD 0.007404085. It should also be noticed that the results became slightly more stable as theory suggests.

##Correlations
descrCor <- cor(data[,2:1163])
summary(descrCor[upper.tri(descrCor)])
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -0.148000 -0.017220  0.004249  0.015190  0.033370  0.850700
highlyCorDescr <- findCorrelation(descrCor, cutoff = .7)
data <- data[,-highlyCorDescr]
descrCor2 <- cor(data[,2:ncol(data)])
summary(descrCor2[upper.tri(descrCor2)])
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -0.148000 -0.017240  0.003997  0.014510  0.032580  0.782600
rm(descrCor)
rm(descrCor2)
rm(highCorr)
## Warning in rm(highCorr): object 'highCorr' not found
rm(highlyCorDescr)
rm(i)
rm(Trans)
rm(skewness)


gbmFit_cor <- train(V1~., data = data,
                method = "gbm",
                trControl = fitControl,
                verbose = TRUE,
                tuneGrid = gbmGrid)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2740
##      2        1.2095             nan     0.1500    0.1902
##      3        1.0849             nan     0.1500    0.1458
##      4        0.9901             nan     0.1500    0.1131
##      5        0.9175             nan     0.1500    0.0915
##      6        0.8587             nan     0.1500    0.0753
##      7        0.8079             nan     0.1500    0.0587
##      8        0.7688             nan     0.1500    0.0511
##      9        0.7340             nan     0.1500    0.0456
##     10        0.7021             nan     0.1500    0.0394
##     20        0.5224             nan     0.1500    0.0127
##     40        0.3887             nan     0.1500    0.0005
##     60        0.3292             nan     0.1500   -0.0008
##     80        0.2883             nan     0.1500    0.0004
##    100        0.2566             nan     0.1500   -0.0008
##    120        0.2310             nan     0.1500   -0.0020
##    140        0.2093             nan     0.1500   -0.0005
##    160        0.1915             nan     0.1500   -0.0009
##    180        0.1751             nan     0.1500   -0.0008
##    200        0.1609             nan     0.1500   -0.0006
##    220        0.1481             nan     0.1500   -0.0014
##    240        0.1367             nan     0.1500   -0.0009
##    260        0.1274             nan     0.1500   -0.0010
##    280        0.1187             nan     0.1500   -0.0007
##    300        0.1099             nan     0.1500   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2717
##      2        1.2069             nan     0.1500    0.1868
##      3        1.0848             nan     0.1500    0.1523
##      4        0.9874             nan     0.1500    0.1171
##      5        0.9131             nan     0.1500    0.1009
##      6        0.8490             nan     0.1500    0.0734
##      7        0.7983             nan     0.1500    0.0601
##      8        0.7582             nan     0.1500    0.0537
##      9        0.7237             nan     0.1500    0.0433
##     10        0.6922             nan     0.1500    0.0405
##     20        0.5148             nan     0.1500    0.0082
##     40        0.3838             nan     0.1500    0.0008
##     60        0.3235             nan     0.1500   -0.0009
##     80        0.2835             nan     0.1500   -0.0004
##    100        0.2525             nan     0.1500   -0.0014
##    120        0.2279             nan     0.1500   -0.0009
##    140        0.2057             nan     0.1500   -0.0010
##    160        0.1868             nan     0.1500   -0.0013
##    180        0.1695             nan     0.1500   -0.0004
##    200        0.1559             nan     0.1500   -0.0004
##    220        0.1432             nan     0.1500   -0.0008
##    240        0.1321             nan     0.1500   -0.0008
##    260        0.1218             nan     0.1500   -0.0008
##    280        0.1126             nan     0.1500   -0.0009
##    300        0.1054             nan     0.1500   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2746
##      2        1.2093             nan     0.1500    0.1879
##      3        1.0849             nan     0.1500    0.1483
##      4        0.9863             nan     0.1500    0.1154
##      5        0.9107             nan     0.1500    0.0922
##      6        0.8508             nan     0.1500    0.0718
##      7        0.8033             nan     0.1500    0.0639
##      8        0.7607             nan     0.1500    0.0539
##      9        0.7240             nan     0.1500    0.0466
##     10        0.6930             nan     0.1500    0.0371
##     20        0.5138             nan     0.1500    0.0080
##     40        0.3851             nan     0.1500    0.0031
##     60        0.3235             nan     0.1500   -0.0010
##     80        0.2824             nan     0.1500   -0.0008
##    100        0.2491             nan     0.1500   -0.0020
##    120        0.2241             nan     0.1500   -0.0025
##    140        0.2023             nan     0.1500   -0.0012
##    160        0.1833             nan     0.1500   -0.0012
##    180        0.1676             nan     0.1500   -0.0011
##    200        0.1539             nan     0.1500   -0.0011
##    220        0.1415             nan     0.1500   -0.0009
##    240        0.1307             nan     0.1500   -0.0009
##    260        0.1211             nan     0.1500   -0.0007
##    280        0.1125             nan     0.1500   -0.0005
##    300        0.1048             nan     0.1500   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2760
##      2        1.2070             nan     0.1500    0.1874
##      3        1.0838             nan     0.1500    0.1442
##      4        0.9899             nan     0.1500    0.1196
##      5        0.9123             nan     0.1500    0.0789
##      6        0.8558             nan     0.1500    0.0741
##      7        0.8069             nan     0.1500    0.0637
##      8        0.7662             nan     0.1500    0.0546
##      9        0.7286             nan     0.1500    0.0441
##     10        0.6992             nan     0.1500    0.0387
##     20        0.5215             nan     0.1500    0.0133
##     40        0.3923             nan     0.1500    0.0020
##     60        0.3315             nan     0.1500   -0.0007
##     80        0.2920             nan     0.1500   -0.0009
##    100        0.2623             nan     0.1500   -0.0005
##    120        0.2367             nan     0.1500   -0.0004
##    140        0.2153             nan     0.1500   -0.0010
##    160        0.1948             nan     0.1500   -0.0013
##    180        0.1779             nan     0.1500   -0.0012
##    200        0.1639             nan     0.1500   -0.0010
##    220        0.1515             nan     0.1500   -0.0010
##    240        0.1417             nan     0.1500   -0.0011
##    260        0.1310             nan     0.1500   -0.0009
##    280        0.1215             nan     0.1500   -0.0011
##    300        0.1128             nan     0.1500   -0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2740
##      2        1.2115             nan     0.1500    0.1951
##      3        1.0864             nan     0.1500    0.1432
##      4        0.9937             nan     0.1500    0.1156
##      5        0.9187             nan     0.1500    0.0960
##      6        0.8579             nan     0.1500    0.0746
##      7        0.8060             nan     0.1500    0.0618
##      8        0.7634             nan     0.1500    0.0467
##      9        0.7303             nan     0.1500    0.0436
##     10        0.6990             nan     0.1500    0.0393
##     20        0.5185             nan     0.1500    0.0120
##     40        0.3860             nan     0.1500    0.0006
##     60        0.3258             nan     0.1500   -0.0005
##     80        0.2848             nan     0.1500   -0.0012
##    100        0.2528             nan     0.1500   -0.0011
##    120        0.2264             nan     0.1500   -0.0009
##    140        0.2043             nan     0.1500   -0.0016
##    160        0.1850             nan     0.1500   -0.0006
##    180        0.1702             nan     0.1500   -0.0019
##    200        0.1570             nan     0.1500   -0.0010
##    220        0.1442             nan     0.1500   -0.0006
##    240        0.1332             nan     0.1500   -0.0007
##    260        0.1240             nan     0.1500   -0.0008
##    280        0.1150             nan     0.1500   -0.0004
##    300        0.1066             nan     0.1500   -0.0007
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3863             nan     0.1500    0.2664
##      2        1.2108             nan     0.1500    0.2020
##      3        1.0852             nan     0.1500    0.1503
##      4        0.9900             nan     0.1500    0.1166
##      5        0.9170             nan     0.1500    0.0908
##      6        0.8576             nan     0.1500    0.0733
##      7        0.8088             nan     0.1500    0.0636
##      8        0.7668             nan     0.1500    0.0486
##      9        0.7335             nan     0.1500    0.0461
##     10        0.7021             nan     0.1500    0.0410
##     20        0.5247             nan     0.1500    0.0103
##     40        0.3980             nan     0.1500    0.0017
##     60        0.3388             nan     0.1500    0.0002
##     80        0.2996             nan     0.1500   -0.0002
##    100        0.2710             nan     0.1500   -0.0005
##    120        0.2473             nan     0.1500   -0.0016
##    140        0.2279             nan     0.1500   -0.0015
##    160        0.2097             nan     0.1500   -0.0006
##    180        0.1937             nan     0.1500   -0.0009
##    200        0.1789             nan     0.1500   -0.0013
##    220        0.1653             nan     0.1500   -0.0007
##    240        0.1543             nan     0.1500   -0.0006
##    260        0.1447             nan     0.1500   -0.0010
##    280        0.1354             nan     0.1500   -0.0009
##    300        0.1266             nan     0.1500   -0.0003
gbmFit_cor
## Stochastic Gradient Boosting 
## 
## 5998 samples
## 1138 predictors
##    4 classes: '1', '2', '3', '4' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times) 
## Summary of sample sizes: 4800, 4798, 4799, 4798, 4797 
## Resampling results
## 
##   Accuracy   Kappa     Accuracy SD  Kappa SD  
##   0.8521195  0.791234  0.01149816   0.01645473
## 
## Tuning parameter 'n.trees' was held constant at a value of 300
##  2
## Tuning parameter 'shrinkage' was held constant at a value of
##  0.15
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## 

Slight improvement and stable results. Merci pour mentanant, nous allons parlez demain.