library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
question1<- movies %>%
rename(movie_title = Film , release_year = Year)
print(head(question1))
## # A tibble: 6 × 8
## movie_title Genre `Lead Studio` `Audience score %` Profitability
## <chr> <chr> <chr> <dbl> <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei… 70 1.75
## 2 Youth in Revolt Come… The Weinstei… 52 1.09
## 3 You Will Meet a Tall Dar… Come… Independent 35 1.21
## 4 When in Rome Come… Disney 44 0
## 5 What Happens in Vegas Come… Fox 72 6.27
## 6 Water For Elephants Drama 20th Century… 72 3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## # release_year <dbl>
question2 <- movies %>%
select(Film, Year, Genre, Profitability)
print(head(question2))
## # A tibble: 6 × 4
## Film Year Genre Profitability
## <chr> <dbl> <chr> <dbl>
## 1 Zack and Miri Make a Porno 2008 Romance 1.75
## 2 Youth in Revolt 2010 Comedy 1.09
## 3 You Will Meet a Tall Dark Stranger 2010 Comedy 1.21
## 4 When in Rome 2010 Comedy 0
## 5 What Happens in Vegas 2008 Comedy 6.27
## 6 Water For Elephants 2011 Drama 3.08
question3 <- movies %>%
filter(Year > 2000 & `Rotten Tomatoes %` > 80)
print(head(question3))
## # A tibble: 6 × 8
## Film Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
## <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 WALL… Anim… Disney 89 2.90 96
## 2 Wait… Roma… Independent 67 11.1 89
## 3 Tang… Anim… Disney 88 1.37 89
## 4 Rach… Drama Independent 61 1.38 85
## 5 My W… Drama The Weinstei… 84 0.826 83
## 6 Midn… Rome… Sony 84 8.74 93
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>
question4 <- movies %>%
mutate(Profitability_millions = Profitability * 1000000)
print(head(question4))
## # A tibble: 6 × 9
## Film Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
## <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 Zack… Roma… The Weinstei… 70 1.75 64
## 2 Yout… Come… The Weinstei… 52 1.09 68
## 3 You … Come… Independent 35 1.21 43
## 4 When… Come… Disney 44 0 15
## 5 What… Come… Fox 72 6.27 28
## 6 Wate… Drama 20th Century… 72 3.08 60
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## # Profitability_millions <dbl>
question5 <- movies %>%
arrange(desc(`Rotten Tomatoes %`), desc (Profitability))
print(head(question5))
## # A tibble: 6 × 8
## Film Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
## <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 WALL… Anim… Disney 89 2.90 96
## 2 Midn… Rome… Sony 84 8.74 93
## 3 Ench… Come… Disney 80 4.01 93
## 4 Knoc… Come… Universal 83 6.64 91
## 5 Wait… Roma… Independent 67 11.1 89
## 6 A Se… Drama Universal 64 4.38 89
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>
movies %>%
filter(Year > 2000 & `Rotten Tomatoes %` > 80) %>%
select(Film, Year, Genre, Profitability, `Rotten Tomatoes %`) %>%
mutate(Profitability_millions = Profitability * 1000000) %>%
arrange(desc(`Rotten Tomatoes %`), desc (Profitability)) %>%
head(6)
## # A tibble: 6 × 6
## Film Year Genre Profitability `Rotten Tomatoes %` Profitability_millions
## <chr> <dbl> <chr> <dbl> <dbl> <dbl>
## 1 WALL-E 2008 Anim… 2.90 96 2896019.
## 2 Midnight… 2011 Rome… 8.74 93 8744706.
## 3 Enchanted 2007 Come… 4.01 93 4005737.
## 4 Knocked … 2007 Come… 6.64 91 6636402.
## 5 Waitress 2007 Roma… 11.1 89 11089742.
## 6 A Seriou… 2009 Drama 4.38 89 4382857.
From the resulting data, the best movies are not the most popular movies. This is because not every movie with a high rotten tomato score had a high profitability. Also, there is not a strong relation between the most popular and best movies because we can see that Wall-E had the highest rotten tomato score but it only made about two million dollars. This means that it did have a high rotten tomato score which makes it the best movie, but it did not have the best profitability compared to other movies. We can also see that Fireproof made sixty-six million dollars, but it was the forty third movie.