library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”.
question1<- movies %>%
  rename(movie_title = Film , release_year = Year)
print(head(question1))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,
question2 <- movies %>% 
  select(Film, Year, Genre, Profitability)
print(head(question2))
## # A tibble: 6 × 4
##   Film                                Year Genre   Profitability
##   <chr>                              <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno          2008 Romance          1.75
## 2 Youth in Revolt                     2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger  2010 Comedy           1.21
## 4 When in Rome                        2010 Comedy           0   
## 5 What Happens in Vegas               2008 Comedy           6.27
## 6 Water For Elephants                 2011 Drama            3.08

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.
question3 <- movies %>%  
  filter(Year > 2000 & `Rotten Tomatoes %` > 80)
print(head(question3))
## # A tibble: 6 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89         2.90                   96
## 2 Wait… Roma… Independent                   67        11.1                    89
## 3 Tang… Anim… Disney                        88         1.37                   89
## 4 Rach… Drama Independent                   61         1.38                   85
## 5 My W… Drama The Weinstei…                 84         0.826                  83
## 6 Midn… Rome… Sony                          84         8.74                   93
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.
question4 <- movies %>% 
  mutate(Profitability_millions = Profitability * 1000000)
print(head(question4))
## # A tibble: 6 × 9
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 3 more variables: `Worldwide Gross` <chr>, Year <dbl>,
## #   Profitability_millions <dbl>

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))
question5 <- movies %>%  
  arrange(desc(`Rotten Tomatoes %`), desc (Profitability))
print(head(question5))
## # A tibble: 6 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 WALL… Anim… Disney                        89          2.90                  96
## 2 Midn… Rome… Sony                          84          8.74                  93
## 3 Ench… Come… Disney                        80          4.01                  93
## 4 Knoc… Come… Universal                     83          6.64                  91
## 5 Wait… Roma… Independent                   67         11.1                   89
## 6 A Se… Drama Universal                     64          4.38                  89
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.
movies %>% 
  filter(Year > 2000 & `Rotten Tomatoes %` > 80) %>%
  select(Film, Year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), desc (Profitability)) %>%
  head(6)
## # A tibble: 6 × 6
##   Film       Year Genre Profitability `Rotten Tomatoes %` Profitability_millions
##   <chr>     <dbl> <chr>         <dbl>               <dbl>                  <dbl>
## 1 WALL-E     2008 Anim…          2.90                  96               2896019.
## 2 Midnight…  2011 Rome…          8.74                  93               8744706.
## 3 Enchanted  2007 Come…          4.01                  93               4005737.
## 4 Knocked …  2007 Come…          6.64                  91               6636402.
## 5 Waitress   2007 Roma…         11.1                   89              11089742.
## 6 A Seriou…  2009 Drama          4.38                  89               4382857.

7. Interpret question 6 (1 point)