library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
district<-read_excel("district.xls")
districtnew <-district |> select(DISTNAME, DPETSPEP, DPFPASPEP)
summary (districtnew)
## DISTNAME DPETSPEP DPFPASPEP
## Length:1207 Min. : 0.00 Min. : 0.000
## Class :character 1st Qu.: 9.90 1st Qu.: 5.800
## Mode :character Median :12.10 Median : 8.900
## Mean :12.27 Mean : 9.711
## 3rd Qu.:14.20 3rd Qu.:12.500
## Max. :51.70 Max. :49.000
## NA's :5
DPFPASPEP is the variable with 5 NA observations
districtclean <- districtnew |> drop_na()
1202 observations are left
plot(districtclean$DPETSPEP,districtclean$DPFPASPEP)
cor(districtclean$DPETSPEP,districtclean$DPFPASPEP)
## [1] 0.3700234
there is a slight correlation between the observations. Because the value is not significanly close to 1, the correlation is just over .37.