Install and load the package
install.packages("wbstats")
##
## The downloaded binary packages are in
## /var/folders/0h/l_7w9x9d7m31mh_z4td6b0mc0000gn/T//RtmppJ7n9v/downloaded_packages
library(wbstats)
meta <- wb_cache()
write.csv(meta$countries, "countries.csv")
write.csv(meta$topics, "topics.csv")
wb_search("population")
## # A tibble: 3,967 × 3
## indicator_id indicator indicator_desc
## <chr> <chr> <chr>
## 1 1.0.HCount.1.90usd Poverty Headcount ($1.90 a day) The poverty hea…
## 2 1.0.HCount.2.5usd Poverty Headcount ($2.50 a day) The poverty hea…
## 3 1.0.HCount.Mid10to50 Middle Class ($10-50 a day) Headcount The poverty hea…
## 4 1.0.HCount.Ofcl Official Moderate Poverty Rate-National The poverty hea…
## 5 1.0.HCount.Poor4uds Poverty Headcount ($4 a day) The poverty hea…
## 6 1.0.HCount.Vul4to10 Vulnerable ($4-10 a day) Headcount The poverty hea…
## 7 1.0.PGap.1.90usd Poverty Gap ($1.90 a day) The poverty gap…
## 8 1.0.PGap.2.5usd Poverty Gap ($2.50 a day) The poverty gap…
## 9 1.0.PGap.Poor4uds Poverty Gap ($4 a day) The poverty gap…
## 10 1.1.HCount.1.90usd Poverty Headcount ($1.90 a day)-Rural The poverty hea…
## # ℹ 3,957 more rows
pop <- wb_data("SP.POP.TOTL")
write.csv(pop, "population.csv")
Stock prices
install.packages("quantmod")
##
## The downloaded binary packages are in
## /var/folders/0h/l_7w9x9d7m31mh_z4td6b0mc0000gn/T//RtmppJ7n9v/downloaded_packages
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
getSymbols(c("MSFT", "BAC" , "HOOD" , "TSLA"), src="yahoo")
## [1] "MSFT" "BAC" "HOOD" "TSLA"
plot(MSFT$MSFT.Close)

plot(HOOD$HOOD.Close)

plot(BAC$BAC.Close)

plot(TSLA$TSLA.Close)

write.csv(TSLA, "TSLA.csv")
write.zoo(TSLA, "TSLA.csv", sep=",")
# install.packages("BiocManager")
# install.packages("pacman")
#pacman::p_load(gtrendsR, ggplot2)
#gtrends(c("NHL", "NFL"), time = "now 1-H", geo = "US")
getSymbols("MSFT", src="yahoo",from = "2024-10-01", to = "2025-02-01")
## [1] "MSFT"