# Load packages
# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching core tidyquant packages ─────────────────────── tidyquant 1.0.11 ──
## ✔ PerformanceAnalytics 2.0.8 ✔ TTR 0.24.4
## ✔ quantmod 0.4.28 ✔ xts 0.14.1── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date() masks base::as.Date()
## ✖ zoo::as.Date.numeric() masks base::as.Date.numeric()
## ✖ dplyr::filter() masks stats::filter()
## ✖ xts::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ xts::last() masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary() masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
# Choose stocks
symbols <- c("SPY", "PPTA", "NVDA", "IBM", "TSLA")
# Using tq_get() ----
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2015-12-31",
to = "2019-12-31")
## Warning: There was 1 warning in `dplyr::mutate()`.
## ℹ In argument: `data.. = purrr::map(...)`.
## Caused by warning:
## ! x = 'PPTA', get = 'stock.prices': Error in getSymbols.yahoo(Symbols = "PPTA", env = <environment>, verbose = FALSE, : Unable to import "PPTA".
## cannot open the connection
## Removing PPTA.
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
# remane
set_names(c("asset", "date", "returns"))
# period_returns = c("yearly", "quarterly", "monthly", "weekly")
## 3 Make plot
``` r
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(col = asset), alpha = 1, show.legend = FALSE) +
geom_histogram(aes(fill = asset), alpha = 0.45, binwidth = 0.01) +
facet_wrap(~asset, ncol = 1, scales = "free_y") +
guides(fill = "none") +
labs(title = "Monthly Returns since 2013",
x = "distribution",
y = "monthly returns") +
theme_update(plot.title = element_text(hjust = 0.5))
```