library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching core tidyquant packages ─────────────────────── tidyquant 1.0.11 ──
## ✔ PerformanceAnalytics 2.0.8 ✔ TTR 0.24.4
## ✔ quantmod 0.4.28 ✔ xts 0.14.1── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date() masks base::as.Date()
## ✖ zoo::as.Date.numeric() masks base::as.Date.numeric()
## ✖ dplyr::filter() masks stats::filter()
## ✖ xts::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ xts::last() masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary() masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Get stock prices and convert to returns
Ra <- c("AVGO", "NVDA", "MSFT") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 135 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AVGO 2022-01-31 -0.117
## 2 AVGO 2022-02-28 0.00266
## 3 AVGO 2022-03-31 0.0792
## 4 AVGO 2022-04-29 -0.120
## 5 AVGO 2022-05-31 0.0464
## 6 AVGO 2022-06-30 -0.156
## 7 AVGO 2022-07-29 0.102
## 8 AVGO 2022-08-31 -0.0679
## 9 AVGO 2022-09-30 -0.103
## 10 AVGO 2022-10-31 0.0588
## # ℹ 125 more rows
Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 45 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 35 more rows
Join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 135 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AVGO 2022-01-31 -0.117 -0.101
## 2 AVGO 2022-02-28 0.00266 -0.0343
## 3 AVGO 2022-03-31 0.0792 0.0341
## 4 AVGO 2022-04-29 -0.120 -0.133
## 5 AVGO 2022-05-31 0.0464 -0.0205
## 6 AVGO 2022-06-30 -0.156 -0.0871
## 7 AVGO 2022-07-29 0.102 0.123
## 8 AVGO 2022-08-31 -0.0679 -0.0464
## 9 AVGO 2022-09-30 -0.103 -0.105
## 10 AVGO 2022-10-31 0.0588 0.0390
## # ℹ 125 more rows
Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
## Registered S3 method overwritten by 'robustbase':
## method from
## hatvalues.lmrob RobStatTM
RaRb_capm
## # A tibble: 3 × 18
## # Groups: symbol [3]
## symbol ActivePremium Alpha AlphaRobust AnnualizedAlpha Beta `Beta-`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AVGO 0.483 0.0331 0.0197 0.478 1.25 1.26
## 2 NVDA 0.504 0.031 0.0281 0.442 2.12 2.87
## 3 MSFT 0.0328 0.004 0.0027 0.0492 0.871 0.635
## # ℹ 11 more variables: `Beta-Robust` <dbl>, `Beta+` <dbl>, `Beta+Robust` <dbl>,
## # BetaRobust <dbl>, Correlation <dbl>, `Correlationp-value` <dbl>,
## # InformationRatio <dbl>, `R-squared` <dbl>, `R-squaredRobust` <dbl>,
## # TrackingError <dbl>, TreynorRatio <dbl>
Which stock has a positively skewed distribution of returns?
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = SkewnessKurtosisRatio)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol SkewnessKurtosisRatio.1
## <chr> <dbl>
## 1 AVGO 0.191
## 2 NVDA -0.0464
## 3 MSFT 0.112