library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
district1<-read_xls("district (1).xls")
districtdata<-district1[c("DISTNAME","DPETSPEP","DPFPASPEP")]
summary(districtdata)
## DISTNAME DPETSPEP DPFPASPEP
## Length:1207 Min. : 0.00 Min. : 0.000
## Class :character 1st Qu.: 9.90 1st Qu.: 5.800
## Mode :character Median :12.10 Median : 8.900
## Mean :12.27 Mean : 9.711
## 3rd Qu.:14.20 3rd Qu.:12.500
## Max. :51.70 Max. :49.000
## NA's :5
##DPFPASPEP is the variable with missing values##
districtdata2<-districtdata|>drop_na(DPFPASPEP)
summary(districtdata2)
## DISTNAME DPETSPEP DPFPASPEP
## Length:1202 Min. : 0.0 Min. : 0.000
## Class :character 1st Qu.: 9.9 1st Qu.: 5.800
## Mode :character Median :12.2 Median : 8.900
## Mean :12.3 Mean : 9.711
## 3rd Qu.:14.2 3rd Qu.:12.500
## Max. :51.7 Max. :49.000
##After removing the 5 missing observations, there are 1202 left overall##
library(ggplot2)
ggplot(districtdata2,aes(x=DPFPASPEP,y=DPETSPEP)) + geom_point()
cor(districtdata2$DPFPASPEP,districtdata2$DPETSPEP)
## [1] 0.3700234
##Correlation is calculated at approximately .37, meaning there is a
slightly positive correlation, however, it is closer to no
correlation##