- Fundamental Method for Modeling Relationships
- Widely Applied in Science, Engineering, and Economics
- Provides Predictive and Explanatory Insights
- Foundation for Advanced Statistical Modeling
September 20, 2025
Definition of the Simple Linear Regression Model:
\[ Y = \beta_0 + \beta_1 X + \epsilon \]
Where:
| \(Y\) | Denotes the Dependent Variable |
| \(X\) | Denotes the Independent Variable |
| \(\beta_0\) | Denotes the Intercept |
| \(\beta_1\) | Denotes the Slope Coefficient |
| \(\epsilon\) | Denotes the Random Error Term |
\[ Y = \beta_0 + \beta_1 X + \epsilon \]
# Fit Linear Regression Model model <- lm(y ~ x, data = df) # Summarize Model summary(model)
## ## Call: ## lm(formula = y ~ x, data = df) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.7160 -1.4053 -0.2472 1.1268 3.6926 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 2.66846 0.72929 3.659 0.00104 ** ## x 0.45080 0.04108 10.974 1.19e-11 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.948 on 28 degrees of freedom ## Multiple R-squared: 0.8113, Adjusted R-squared: 0.8046 ## F-statistic: 120.4 on 1 and 28 DF, p-value: 1.191e-11
Regression model estimation applies a linear function to quantify the dependence of Y on X. Output reports coefficient values with associated error measures and significance tests. Results establish a statistical basis for evaluating model validity and effect magnitude.
Interactive three-dimensional visualization depicts dependence of response on predictor with residual variation. Rotational perspective enables analysis of structural patterns and detection of model inadequacies.
Thank You for Viewing This Presentation!