Rows: 423 Columns: 44
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): County, Crime Type
dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
county year crimetype anti-male
Length:423 Min. :2010 Length:423 Min. :0.000000
Class :character 1st Qu.:2011 Class :character 1st Qu.:0.000000
Mode :character Median :2013 Mode :character Median :0.000000
Mean :2013 Mean :0.007092
3rd Qu.:2015 3rd Qu.:0.000000
Max. :2016 Max. :1.000000
anti-female anti-transgender anti-genderidentityexpression
Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
Median :0.00000 Median :0.00000 Median :0.00000
Mean :0.01655 Mean :0.04728 Mean :0.05674
3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
Max. :1.00000 Max. :5.00000 Max. :3.00000
anti-age* anti-white anti-black
Min. :0.00000 Min. : 0.0000 Min. : 0.000
1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.000
Median :0.00000 Median : 0.0000 Median : 1.000
Mean :0.05201 Mean : 0.3357 Mean : 1.761
3rd Qu.:0.00000 3rd Qu.: 0.0000 3rd Qu.: 2.000
Max. :9.00000 Max. :11.0000 Max. :18.000
anti-americanindian/alaskannative anti-asian
Min. :0.000000 Min. :0.0000
1st Qu.:0.000000 1st Qu.:0.0000
Median :0.000000 Median :0.0000
Mean :0.007092 Mean :0.1773
3rd Qu.:0.000000 3rd Qu.:0.0000
Max. :1.000000 Max. :8.0000
anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0.00000 Median :0
Mean :0 Mean :0.08511 Mean :0
3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :3.00000 Max. :0
anti-jewish anti-catholic anti-protestant anti-islamic(muslim)
Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 3.981 Mean : 0.2695 Mean :0.02364 Mean : 0.4704
3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :82.000 Max. :12.0000 Max. :1.00000 Max. :10.0000
anti-multi-religiousgroups anti-atheism/agnosticism
Min. : 0.00000 Min. :0
1st Qu.: 0.00000 1st Qu.:0
Median : 0.00000 Median :0
Mean : 0.07565 Mean :0
3rd Qu.: 0.00000 3rd Qu.:0
Max. :10.00000 Max. :0
anti-religiouspracticegenerally anti-otherreligion anti-buddhist
Min. :0.000000 Min. :0.000 Min. :0
1st Qu.:0.000000 1st Qu.:0.000 1st Qu.:0
Median :0.000000 Median :0.000 Median :0
Mean :0.007092 Mean :0.104 Mean :0
3rd Qu.:0.000000 3rd Qu.:0.000 3rd Qu.:0
Max. :2.000000 Max. :4.000 Max. :0
anti-easternorthodox(greek,russian,etc.) anti-hindu
Min. :0.000000 Min. :0.000000
1st Qu.:0.000000 1st Qu.:0.000000
Median :0.000000 Median :0.000000
Mean :0.002364 Mean :0.002364
3rd Qu.:0.000000 3rd Qu.:0.000000
Max. :1.000000 Max. :1.000000
anti-jehovahswitness anti-mormon anti-otherchristian anti-sikh
Min. :0 Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0 Median :0.00000 Median :0
Mean :0 Mean :0 Mean :0.01655 Mean :0
3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :0 Max. :3.00000 Max. :0
anti-hispanic anti-arab anti-otherethnicity/nationalorigin
Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 0.3735 Mean :0.06619 Mean : 0.2837
3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :17.0000 Max. :2.00000 Max. :19.0000
anti-non-hispanic* anti-gaymale anti-gayfemale anti-gay(maleandfemale)
Min. :0 Min. : 0.000 Min. :0.0000 Min. :0.0000
1st Qu.:0 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0 Median : 0.000 Median :0.0000 Median :0.0000
Mean :0 Mean : 1.499 Mean :0.2411 Mean :0.1017
3rd Qu.:0 3rd Qu.: 1.000 3rd Qu.:0.0000 3rd Qu.:0.0000
Max. :0 Max. :36.000 Max. :8.0000 Max. :4.0000
anti-heterosexual anti-bisexual anti-physicaldisability
Min. :0.000000 Min. :0.000000 Min. :0.00000
1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
Median :0.000000 Median :0.000000 Median :0.00000
Mean :0.002364 Mean :0.004728 Mean :0.01182
3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000
Max. :1.000000 Max. :1.000000 Max. :1.00000
anti-mentaldisability totalincidents totalvictims totaloffenders
Min. :0.000000 Min. : 1.00 Min. : 1.00 Min. : 1.00
1st Qu.:0.000000 1st Qu.: 1.00 1st Qu.: 1.00 1st Qu.: 1.00
Median :0.000000 Median : 3.00 Median : 3.00 Median : 3.00
Mean :0.009456 Mean : 10.09 Mean : 10.48 Mean : 11.77
3rd Qu.:0.000000 3rd Qu.: 10.00 3rd Qu.: 10.00 3rd Qu.: 11.00
Max. :1.000000 Max. :101.00 Max. :106.00 Max. :113.00
I decided I would only look at the hate-crime types with a max number of 9 or more. That way I can focus on the most prominent types of hate-crimes.
Check the dimensions and the summary to make sure no missing values
Also check the dimensions to count how many variables remain
dim(hatecrimes2)
[1] 423 12
# There are currently 12 variables with 423 rows.#summary(hatecrimes2) # remove the hashtag on this line to see the summary of all the variables, but it is better to render the document with the hashtag in place, since it is such long output
Convert from wide to long format
Look at each set of hate-crimes for each type for each year. Convert the dataset from wide to long with the pivot_longer function. It will take each column’s hate-crime type combine them all into one column called “victim_cat”. Then each cell count will go into the new column, “crimecount”.
Finally, we are only doing this for the quantitiative variables, which are in columns 3 - 10. Note the command facet_wrap requires (~) before “victim_cat”.
Look deeper into crimes against blacks, gay males, and jews
From the facet_wrap plot above, anti-black, anti-gay males, and anti-jewish categories seem to have highest rates of offenses reported. Filter out just for those 3 crimes.
Use the following commands to finalize your barplot: - position = “dodge” makes side-by-side bars, rather than stacked bars - stat = “identity” allows you to plot each set of bars for each year between 2010 and 2016 - ggtitle gives the plot a title - labs gives a title to the legend
plot2 <- hatenew |>ggplot() +geom_bar(aes(x=year, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot2
We can see that hate crimes against jews spiked in 2012. All other years were relatively consistent with a slight upward trend. There was also an upward trend in hate crimes against gay males. Finally, there appears to be a downward trend in hate crimes against blacks during this period.
What about the counties?
I have not dealt with the counties, but I think that is the next place to explore. I can make bar graphs by county instead of by year.
plot3 <- hatenew |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot3
So many counties
There are too many counties for this plot to make sense, but maybe we can just look at the 5 counties with the highest number of incidents. - use “group_by” to group each row by counties - use summarize to get the total sum of incidents by county - use arrange(desc) to arrange those sums of total incidents by counties in descending order.
`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.
counties
# A tibble: 277 × 3
# Groups: year [7]
year county sum
<dbl> <chr> <dbl>
1 2012 Kings 136
2 2010 Kings 110
3 2016 Kings 101
4 2013 Kings 96
5 2014 Kings 94
6 2015 Kings 90
7 2011 Kings 86
8 2016 New York 86
9 2012 Suffolk 83
10 2013 New York 75
# ℹ 267 more rows
Top 5
To list the 5 counties with the highest total incidents, change group_by to: group_by(county), then use slice_max(order_by = sum, n=5) to list the 5 counties with highest total incidents
# A tibble: 5 × 2
county sum
<chr> <dbl>
1 Kings 713
2 New York 459
3 Suffolk 360
4 Nassau 298
5 Queens 235
Finally, create the barplot above, but only for the 5 counties in 2012 with the highest incidents of hate-crimes. The command “labs” is nice, because you can get a title, subtitle, y-axis label, and legend title, all in one command.
plot4 <- hatenew |>filter(county %in%c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(y ="Number of Hate Crime Incidents",title ="5 Counties in NY with Highest Incidents of Hate Crimes",subtitle ="Between 2010-2016", fill ="Hate Crime Type",caption ="Source: NY State Division of Criminal Justice Services")plot4
How would calculations be affected by looking at hate crimes in counties per year by population densities?
Bring in census data for populations of New York counties. These are estimates from the 2010 census.
Rows: 62 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Geography
dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Clean the county name to match the other dataset
Rename the variable “Geography” as “county” so that it matches in the other dataset.
# A tibble: 6 × 3
county year population
<chr> <dbl> <dbl>
1 Albany , New York 2010 304078
2 Allegany , New York 2010 48949
3 Bronx , New York 2010 1388240
4 Broome , New York 2010 200469
5 Cattaraugus , New York 2010 80249
6 Cayuga , New York 2010 79844
Focus on 2012
Since 2012 had the highest counts of hate crimes, let’s look at the populations of the counties in 2012.
Clean the nypoplong12 variable, county, so that matches the counties12 variable by Cutting off the “, New York” portion of the county listing
nypoplong12 <- nypoplong |>filter(year ==2012) |>arrange(desc(population)) |>head(10)nypoplong12$county<-gsub(" , New York","",nypoplong12$county)nypoplong12
# A tibble: 10 × 3
county year population
<chr> <dbl> <dbl>
1 Kings 2012 2572282
2 Queens 2012 2278024
3 New York 2012 1625121
4 Suffolk 2012 1499382
5 Bronx 2012 1414774
6 Nassau 2012 1350748
7 Westchester 2012 961073
8 Erie 2012 920792
9 Monroe 2012 748947
10 Richmond 2012 470978
Not surprisingly, 4/5 of the counties with the highest populations also were listed in the counties with the highest number of hate crimes. Only the Bronx, which has the fifth highest population is not in the list with the highest number of total hate crimes over the period from 2010 to 2016.
Recall the total hate crime counts:
Kings 713 New York 459 Suffolk 360 Nassau 298 Queens 235
# A tibble: 41 × 5
# Groups: year [1]
year county sum population rate
<dbl> <chr> <dbl> <dbl> <dbl>
1 2012 Suffolk 83 1499382 5.54
2 2012 Kings 136 2572282 5.29
3 2012 New York 71 1625121 4.37
4 2012 Richmond 18 470978 3.82
5 2012 Nassau 48 1350748 3.55
6 2012 Erie 28 920792 3.04
7 2012 Queens 48 2278024 2.11
8 2012 Bronx 23 1414774 1.63
9 2012 Westchester 13 961073 1.35
10 2012 Monroe 5 748947 0.668
# ℹ 31 more rows
Notice that the highest rates of hate crimes in 2012 happened in:
dt <- datajoinrate[,c("county","rate")]dt
# A tibble: 41 × 2
county rate
<chr> <dbl>
1 Suffolk 5.54
2 Kings 5.29
3 New York 4.37
4 Richmond 3.82
5 Nassau 3.55
6 Erie 3.04
7 Queens 2.11
8 Bronx 1.63
9 Westchester 1.35
10 Monroe 0.668
# ℹ 31 more rows
But the highest populated counties were: Kings (Brooklyn), Queens, New York, Suffolk (Long Island), Bronx, and Nassau. They do not correspond directly, though they are similar, to the counties with highest rates of hate crimes.
Write about the positive and negative aspects of this hatecrimes dataset.
One of the main aspects of this dataset that I appreciate is how specific it is with its county and differentiating the type of crime type per year. On the other hand, clarity on what classifies as a hate crime for a “non-hispanic” would’ve been appreciated, because a lot of other ethnicities and marginalized groups by hate crime are categories yet “anti-non-hispanic” feels redundant. Any non-hispanic person can belong to another group/ethnicity, and the fact that there are 0 entries for hate crimes in this category can support that this category of hate-crime may be useless in a future data collection if a recorded “anti-non-hispanic” crime could just go to an “anti-white” crime or any other “anti-[insert other race]” crime.
List 2 different paths you would like to (hypothetically) study about this dataset.
I’d like to hypothetically look into hate crimes against Hispanics/Latinos where they coincide with real world events in 2010-2016 that affect a great deal of the Hispanic/Latino population, most notably immigration reform. Hate crimes can emerge from protests made around the time, targeted against police, etc. The same can be said for LGBTQ+ people and the legal recognition of gay marriage in 2015 after Obergefell v. Hodges, and if hate crimes correlate to the ruling as a form of backlash against LGBTQ+ people. I could also hypothesize that hate crimes are very political, and in the 2010-2016 political climate it would be important to note certain Supreme Court cases, news headlines, elections, policy changes, etc that specifically target marginalized groups and unfortunately open up hate crime opportunity through politics.