Flawed hate crime data collection - we should know how the data was collected
(Nathan Yau of Flowing Data, Dec 5, 2017)
Data can provide you with important information, but when the collection process is flawed, there’s not much you can do. Ken Schwencke, reporting for ProPublica, researched the tiered system that the FBI relies on to gather hate crime data for the United States:
“Under a federal law passed in 1990, the FBI is required to track and tabulate crimes in which there was ‘manifest evidence of prejudice’ against a host of protected groups, regardless of differences in how state laws define who’s protected. The FBI, in turn, relies on local law enforcement agencies to collect and submit this data, but can’t compel them to do so.”
So now we know that there is possible bias in the dataset, what can we do with it?
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.2 ✔ tibble 3.3.0
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.1.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Rows: 423 Columns: 44
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): County, Crime Type
dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
county year crimetype anti-male
Length:423 Min. :2010 Length:423 Min. :0.000000
Class :character 1st Qu.:2011 Class :character 1st Qu.:0.000000
Mode :character Median :2013 Mode :character Median :0.000000
Mean :2013 Mean :0.007092
3rd Qu.:2015 3rd Qu.:0.000000
Max. :2016 Max. :1.000000
anti-female anti-transgender anti-genderidentityexpression
Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
Median :0.00000 Median :0.00000 Median :0.00000
Mean :0.01655 Mean :0.04728 Mean :0.05674
3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
Max. :1.00000 Max. :5.00000 Max. :3.00000
anti-age* anti-white anti-black
Min. :0.00000 Min. : 0.0000 Min. : 0.000
1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.000
Median :0.00000 Median : 0.0000 Median : 1.000
Mean :0.05201 Mean : 0.3357 Mean : 1.761
3rd Qu.:0.00000 3rd Qu.: 0.0000 3rd Qu.: 2.000
Max. :9.00000 Max. :11.0000 Max. :18.000
anti-americanindian/alaskannative anti-asian
Min. :0.000000 Min. :0.0000
1st Qu.:0.000000 1st Qu.:0.0000
Median :0.000000 Median :0.0000
Mean :0.007092 Mean :0.1773
3rd Qu.:0.000000 3rd Qu.:0.0000
Max. :1.000000 Max. :8.0000
anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0.00000 Median :0
Mean :0 Mean :0.08511 Mean :0
3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :3.00000 Max. :0
anti-jewish anti-catholic anti-protestant anti-islamic(muslim)
Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 3.981 Mean : 0.2695 Mean :0.02364 Mean : 0.4704
3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :82.000 Max. :12.0000 Max. :1.00000 Max. :10.0000
anti-multi-religiousgroups anti-atheism/agnosticism
Min. : 0.00000 Min. :0
1st Qu.: 0.00000 1st Qu.:0
Median : 0.00000 Median :0
Mean : 0.07565 Mean :0
3rd Qu.: 0.00000 3rd Qu.:0
Max. :10.00000 Max. :0
anti-religiouspracticegenerally anti-otherreligion anti-buddhist
Min. :0.000000 Min. :0.000 Min. :0
1st Qu.:0.000000 1st Qu.:0.000 1st Qu.:0
Median :0.000000 Median :0.000 Median :0
Mean :0.007092 Mean :0.104 Mean :0
3rd Qu.:0.000000 3rd Qu.:0.000 3rd Qu.:0
Max. :2.000000 Max. :4.000 Max. :0
anti-easternorthodox(greek,russian,etc.) anti-hindu
Min. :0.000000 Min. :0.000000
1st Qu.:0.000000 1st Qu.:0.000000
Median :0.000000 Median :0.000000
Mean :0.002364 Mean :0.002364
3rd Qu.:0.000000 3rd Qu.:0.000000
Max. :1.000000 Max. :1.000000
anti-jehovahswitness anti-mormon anti-otherchristian anti-sikh
Min. :0 Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0 Median :0.00000 Median :0
Mean :0 Mean :0 Mean :0.01655 Mean :0
3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :0 Max. :3.00000 Max. :0
anti-hispanic anti-arab anti-otherethnicity/nationalorigin
Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 0.3735 Mean :0.06619 Mean : 0.2837
3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :17.0000 Max. :2.00000 Max. :19.0000
anti-non-hispanic* anti-gaymale anti-gayfemale anti-gay(maleandfemale)
Min. :0 Min. : 0.000 Min. :0.0000 Min. :0.0000
1st Qu.:0 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0 Median : 0.000 Median :0.0000 Median :0.0000
Mean :0 Mean : 1.499 Mean :0.2411 Mean :0.1017
3rd Qu.:0 3rd Qu.: 1.000 3rd Qu.:0.0000 3rd Qu.:0.0000
Max. :0 Max. :36.000 Max. :8.0000 Max. :4.0000
anti-heterosexual anti-bisexual anti-physicaldisability
Min. :0.000000 Min. :0.000000 Min. :0.00000
1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
Median :0.000000 Median :0.000000 Median :0.00000
Mean :0.002364 Mean :0.004728 Mean :0.01182
3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000
Max. :1.000000 Max. :1.000000 Max. :1.00000
anti-mentaldisability totalincidents totalvictims totaloffenders
Min. :0.000000 Min. : 1.00 Min. : 1.00 Min. : 1.00
1st Qu.:0.000000 1st Qu.: 1.00 1st Qu.: 1.00 1st Qu.: 1.00
Median :0.000000 Median : 3.00 Median : 3.00 Median : 3.00
Mean :0.009456 Mean : 10.09 Mean : 10.48 Mean : 11.77
3rd Qu.:0.000000 3rd Qu.: 10.00 3rd Qu.: 10.00 3rd Qu.: 11.00
Max. :1.000000 Max. :101.00 Max. :106.00 Max. :113.00
plot2 <- hatenew |>ggplot() +geom_bar(aes(x=year, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot2
What about countries?
plot3 <- hatenew |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot3
# A tibble: 5 × 2
county sum
<chr> <dbl>
1 Kings 713
2 New York 459
3 Suffolk 360
4 Nassau 298
5 Queens 235
plot4 <- hatenew |>filter(county %in%c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(y ="Number of Hate Crime Incidents",title ="5 Counties in NY with Highest Incidents of Hate Crimes",subtitle ="Between 2010-2016", fill ="Hate Crime Type",caption ="Source: NY State Division of Criminal Justice Services")plot4
How would calculations be affected by looking at hate crimes in countries per year bby population densitities?
Rows: 62 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Geography
dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# A tibble: 6 × 3
county year population
<chr> <dbl> <dbl>
1 Albany , New York 2010 304078
2 Allegany , New York 2010 48949
3 Bronx , New York 2010 1388240
4 Broome , New York 2010 200469
5 Cattaraugus , New York 2010 80249
6 Cayuga , New York 2010 79844
Focus on 2012
nypoplong12 <- nypoplong |>filter(year ==2012) |>arrange(desc(population)) |>head(10)nypoplong12$county<-gsub(" , New York","",nypoplong12$county)nypoplong12
# A tibble: 10 × 3
county year population
<chr> <dbl> <dbl>
1 Kings 2012 2572282
2 Queens 2012 2278024
3 New York 2012 1625121
4 Suffolk 2012 1499382
5 Bronx 2012 1414774
6 Nassau 2012 1350748
7 Westchester 2012 961073
8 Erie 2012 920792
9 Monroe 2012 748947
10 Richmond 2012 470978
The positive aspects of this dataset are that it gives information about what kinds of incidents were reported, where they happened, and how they changed over time. With this information, it allows us to explore patterns, across counties and compare different types of crimes. Having these data organized allows us to ask questions and look for trends, which can make the issue more visible and understandable for people who aren’t familiar with data sets. While, the negative aspects are that not all hate crimes are reported to the police and not every police department submits complete numbers to the FBI. Meaning that the numbers we see in the date set might be lower in reality. Because of this, the data set doesn’t give the full picture, and we must be careful about the conclusions we draw.
2 of the pathways I would like to study further are comparing the county population sizes since it would show whether certain areas faces higher rates than others. I would also want to group the crimes into broader categories, such as religion, race and ethnicity or LGBTQ identity, having it in order would be useful , since numbers alone cant tell the whole story.