library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library("readxl")
district_data <- read_xls("district.xls")
HomeworkVariables<-district_data %>% select(DISTNAME,DPETSPEP,DPFPASPEP)
summary(HomeworkVariables)
##    DISTNAME            DPETSPEP       DPFPASPEP     
##  Length:1207        Min.   : 0.00   Min.   : 0.000  
##  Class :character   1st Qu.: 9.90   1st Qu.: 5.800  
##  Mode  :character   Median :12.10   Median : 8.900  
##                     Mean   :12.27   Mean   : 9.711  
##                     3rd Qu.:14.20   3rd Qu.:12.500  
##                     Max.   :51.70   Max.   :49.000  
##                                     NA's   :5
#DPFPASPEP has missing variables

HomeworkVariables_Clean<-HomeworkVariables %>% 
  drop_na(DPFPASPEP) 
ggplot(HomeworkVariables_Clean,aes(x=DPETSPEP,y=DPFPASPEP))+geom_point()

cor(HomeworkVariables_Clean$DPFPASPEP, HomeworkVariables_Clean$DPETSPEP)
## [1] 0.3700234

As the percentage of students in special education increases, spending on special education tends to increase but not strongly. There is a relatively low correlation and a significant number of outliers.