library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library("readxl")
district_data <- read_xls("district.xls")
HomeworkVariables<-district_data %>% select(DISTNAME,DPETSPEP,DPFPASPEP)
summary(HomeworkVariables)
## DISTNAME DPETSPEP DPFPASPEP
## Length:1207 Min. : 0.00 Min. : 0.000
## Class :character 1st Qu.: 9.90 1st Qu.: 5.800
## Mode :character Median :12.10 Median : 8.900
## Mean :12.27 Mean : 9.711
## 3rd Qu.:14.20 3rd Qu.:12.500
## Max. :51.70 Max. :49.000
## NA's :5
#DPFPASPEP has missing variables
HomeworkVariables_Clean<-HomeworkVariables %>%
drop_na(DPFPASPEP)
ggplot(HomeworkVariables_Clean,aes(x=DPETSPEP,y=DPFPASPEP))+geom_point()
cor(HomeworkVariables_Clean$DPFPASPEP, HomeworkVariables_Clean$DPETSPEP)
## [1] 0.3700234
As the percentage of students in special education increases, spending on special education tends to increase but not strongly. There is a relatively low correlation and a significant number of outliers.