Question 1

The ants dataset consists of 97 marked planar points. There are 29 Cataglyphis ant nests and 68 Messor ant nests.

Question 2

It is marked. The marking means that there is extra information given to each individual point, in this case whether they are Cataglyphis or Messor ant nests.

Question 3

The Chi-square test produces a P-value of 0.5417. Therefore, the null hypothesis is not rejected as it is greater than 0.05.

Question 4

residuals <- residuals(mytest)
hist(residuals)

Question 5

ants_split <- split(ants)
messor <- ants_split$Messor
quadrat.test(messor)

catag <- ants_split$Cataglyphis
quadrat.test(catag)

Messor P-value equals 0.2219, therefore it is insignificant and we cannot reject the null hypothesis that it was caused by random spatial distribution or complete spatial randomness. Cataglyphis P-value equals 0.1575, therefore it is also insignificant. Cannot reject the null hypothesis that it was caused by complete spatial randomness.

Question 6

G_ant <- envelope(ants, Gest, nsim = 100, alpha  = 0.05)
## Generating 100 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 
## 100.
## 
## Done.
plot(G_ant)

The observed nearest neighbour distance remains within the 95% confidence upper and lower boundaries. However, it is below the theoretical random distribution line, therefore it is a slightly over-dispersed resulting in a regular dispersion of ant nests. But, not enough to be regarded as not generated by CSR.

Question 7

envelope(lansing, Gcross, nsim = 99, i = 'maple', j = 'hickory') |> plot()
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.

envelope(lansing, Kcross, nsim = 99, i = 'maple', j = 'hickory') |> plot()
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.

envelope(lansing, pcfcross, nsim = 99, i = 'maple', j = 'hickory') |> plot()
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.

The GCross graph shows that the maple trees are further away, on average, from hickory trees than would be expected under independence. This suggests a cross-type repulsion. The KCross graph shows that the hickory trees are on average more dispersed than maple trees would be by chance. This suggests a negative spatial association. The pcfCross graphs shows that the maple trees and hickory trees are repelling each other at distance r. Overall, these three graphs show a consistent message that they are all well dispersed, especially in relation to each other species. Each species stay with its own species.

Question 8

envelope(ants, Gcross, nsim = 99, i = 'Messor', j = 'Cataglyphis') |> plot()
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.

envelope(ants, Kcross, nsim = 99, i = 'Messor', j = 'Cataglyphis') |> plot()
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.

envelope(ants, pcfcross, nsim = 99, i = 'Messor', j = 'Cataglyphis') |> plot()
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.

The GCross graph shows that the Messor ant nests are on average closer to Cataglphis ant nests than would be expected under null hypothesis of independence. The observed line being above the theoretical curve suggests clustering. The KCross graph shows that Messor ant nests and Cataglyphis ant nests are spatially independent of one another as the observed line follows the theoretical curve. The pcfCross graph shows the observed line equalling 1. Therefore, Messor and Cataglyphis ant nests are independent of one another at distance R. Overall, the ant nests are all within the confidence boundaries meaning we can trust that the results displayed did not occur from CSR. Additionally, the Messor and Cataglyphis are independent from each other.

Question 9

E <- envelope(longleaf, markcorr, nsim=99)
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.
plot(E)

There is a significant deviation from the null expectation from 0m to 12m. In this distance, there is negative association, meaning trees with different diametres tend to be found close to one another. Beyond 12m, there is a lack of a correlation.

Question 10

The deviation suggests a negative association up until 12 metres. Afterwards there is no correlation.

Question 11

Trees tend to be nearer to other trees with different sizes, not similar sizes

Question 12

E_anemones <- envelope(anemones, markcorr, nsim=99)
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
## 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
## 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
## 99.
## 
## Done.
plot(E_anemones)

The anemones graph illustrates a large deviation from the null expectation from 0r to 15r. In this range it is below the value 1 and therefore there is negative association. This suggests that nearby anemones are different sizes to each other. However, beyond 15r away, the observed data follows the theoretical curve. This means that it is random distribution for anemones beyond this distance. My hypothesis for this observed anemones line shape is that large anemones are in strong competition with equally sized anemones, therefore they go far away from each other. Meanwhile, they are in less competition with small anemones so do not compete over space with them for food.