2_3 condition study

Author

Marie Lasrado & Seidali Kurtmollaiev

Published

October 10, 2025


Data preparation - raw dataset

Import

Sample size

$all
[1] 270

Data Quality

Manipulation check and bot

Manipulation flag

                    
                     FALSE TRUE
  no_reward            128    0
  performance_reward   135    7
          
           FALSE TRUE
  both_ori    75    2
  EEC_ori     83   19
  EEF_ori     73   18

Descriptive stats on failed manipulation checks

Reward manipulation check
   
    FALSE TRUE
  1   128    0
  2   135    7
Overall percentages (out of all participants)
   
    FALSE  TRUE
  1 47.41  0.00
  2 50.00  2.59
Within each condition (row percentages)
   
     FALSE   TRUE
  1 100.00   0.00
  2  95.07   4.93
Total failed manipulation check (Reward condition):
7 participants ( 2.59 %)
Eco-orientation manipulation check
   
    FALSE TRUE
  1    73   18
  2    83   19
  3    75    2
Overall percentages (out of all participants)
   
    FALSE  TRUE
  1 27.04  6.67
  2 30.74  7.04
  3 27.78  0.74
Within each condition (row percentages)
   
    FALSE  TRUE
  1 80.22 19.78
  2 81.37 18.63
  3 97.40  2.60
Total failed manipulation check (eco condition):
39 participants ( 14.44 %)

Correlation between total approvals and passing attention check

`geom_smooth()` using formula = 'y ~ x'

[1] 0.03767484

Bot flag


FALSE  TRUE 
  269     1 

Attention

Duration

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.750   4.217   5.417   6.241   7.042  25.000 

Outliers defined as 3 std. deviations below or above the mean
Outliers on completion time

FALSE  TRUE 
  263     7 

On scales

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  0.8287  1.1507  1.1605  1.4746  2.5300 
Flagged outliers based on scales

FALSE  TRUE 
  266     4 

Removing bad participants

Exclude participants

cond.reward_flag cond.eco_flag outliers_completion bot_flag outliers_scales n
TRUE FALSE FALSE FALSE FALSE 5
TRUE TRUE FALSE FALSE FALSE 2
FALSE FALSE FALSE FALSE TRUE 3
FALSE FALSE FALSE TRUE FALSE 1
FALSE FALSE TRUE FALSE FALSE 7
FALSE TRUE FALSE FALSE FALSE 36
FALSE TRUE FALSE FALSE TRUE 1
total excluded from the dataset
$all
[1] 55

Filtered dataset

Descriptive on good participants

Descriptive tables

✅ All descriptive tables have been saved to 'descriptive_tables.xlsx'
   vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
X1    1 214 43.19 11.62     41   42.61 11.86  19  73    54 0.45    -0.61 0.79
                Sex   n percent
1            Female 123    57.5
2              Male  90    42.1
3 Prefer not to say   1     0.5
  Employment.status   n percent
1         Full-Time 160    74.8
2         Part-Time  54    25.2
   vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
X1    1 214 43.19 11.62     41   42.61 11.86  19  73    54 0.45    -0.61 0.79
   vars   n   mean      sd median trimmed    mad min  max range skew kurtosis
X1    1 214 938.69 1034.65  560.5  740.38 576.73   0 5278  5278 2.03     4.44
      se
X1 70.73

Conditions

Group statistics

Reward groups

         no_reward performance_reward 
               109                105 
Eco orientation groups

both_ori  EEC_ori  EEF_ori 
      72       72       70 
# A tibble: 6 × 9
  Condition_reward_name Condition_eco_name     n mean_EEF sd_EEF mean_EEC sd_EEC
  <chr>                 <chr>              <int>    <dbl>  <dbl>    <dbl>  <dbl>
1 no_reward             EEC_ori               36     5.42  1.24      4.51   1.46
2 no_reward             EEF_ori               37     5.39  0.848     4.09   1.05
3 no_reward             both_ori              36     5.09  1.08      4.14   1.05
4 performance_reward    EEC_ori               36     5.67  1.05      4.64   1.14
5 performance_reward    EEF_ori               33     5.71  1.06      4.47   1.20
6 performance_reward    both_ori              36     5.14  1.31      3.97   1.40
# ℹ 2 more variables: mean_IM <dbl>, sd_IM <dbl>

Ease and feedback

Q: Were there anything that you found confusing or difficult to follow/answer?

   vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
X1    1 214 4.07 0.82   4.19    4.16 0.91 1.37   5  3.63 -0.81    -0.03 0.06

Scales

Descriptive stats on scales

 all good 
 270  214 
     vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
IM1     1 214 5.15 1.17      5    5.22 1.48   1   7     6 -0.75     0.71 0.08
IM2     2 214 5.66 1.08      6    5.78 1.48   1   7     6 -1.32     3.08 0.07
IM3     3 214 5.48 1.17      6    5.60 1.48   1   7     6 -1.31     2.67 0.08
EEF1    4 214 5.28 1.19      5    5.38 1.48   1   7     6 -1.03     1.89 0.08
EEF2    5 214 5.43 1.21      6    5.55 1.48   1   7     6 -0.89     0.87 0.08
EEF3    6 214 5.48 1.15      6    5.58 1.48   1   7     6 -0.93     1.33 0.08
EEC1    7 214 4.25 1.32      4    4.30 1.48   1   7     6 -0.28    -0.50 0.09
EEC2    8 214 4.29 1.44      5    4.37 1.48   1   7     6 -0.42    -0.43 0.10
EEC3    9 214 4.36 1.37      5    4.43 1.48   1   7     6 -0.38    -0.22 0.09
ADT1   10 214 5.39 1.05      5    5.43 1.48   1   7     6 -0.57     0.77 0.07
ADT2   11 214 5.33 1.06      5    5.37 1.48   1   7     6 -0.66     1.00 0.07
ADT3   12 214 5.25 1.20      5    5.32 1.48   1   7     6 -0.60     0.16 0.08
TR1    13 214 3.79 1.50      4    3.81 1.48   1   7     6 -0.09    -0.83 0.10
TR2    14 214 3.76 1.55      4    3.78 1.48   1   7     6 -0.12    -1.13 0.11
TR3    15 214 3.48 1.51      4    3.51 1.48   1   7     6 -0.11    -1.05 0.10

Descriptive stats on scales

 all good 
 270  214 
     Variable vars   n     mean       sd median  trimmed    mad min max range
IM1       IM1    1 214 5.149533 1.165254      5 5.215116 1.4826   1   7     6
IM2       IM2    2 214 5.663551 1.078548      6 5.784884 1.4826   1   7     6
IM3       IM3    3 214 5.476636 1.165593      6 5.598837 1.4826   1   7     6
EEF1     EEF1    4 214 5.280374 1.189109      5 5.377907 1.4826   1   7     6
EEF2     EEF2    5 214 5.429907 1.211154      6 5.552326 1.4826   1   7     6
EEF3     EEF3    6 214 5.481308 1.149454      6 5.575581 1.4826   1   7     6
EEC1     EEC1    7 214 4.247664 1.317762      4 4.302326 1.4826   1   7     6
EEC2     EEC2    8 214 4.294393 1.438004      5 4.372093 1.4826   1   7     6
EEC3     EEC3    9 214 4.359813 1.369168      5 4.430233 1.4826   1   7     6
ADT1     ADT1   10 214 5.387850 1.045465      5 5.430233 1.4826   1   7     6
ADT2     ADT2   11 214 5.331776 1.060259      5 5.366279 1.4826   1   7     6
ADT3     ADT3   12 214 5.247664 1.198344      5 5.319767 1.4826   1   7     6
TR1       TR1   13 214 3.794393 1.502663      4 3.808140 1.4826   1   7     6
TR2       TR2   14 214 3.761682 1.545622      4 3.779070 1.4826   1   7     6
TR3       TR3   15 214 3.476636 1.509568      4 3.505814 1.4826   1   7     6
            skew   kurtosis         se
IM1  -0.75151662  0.7088089 0.07965512
IM2  -1.31757192  3.0807794 0.07372804
IM3  -1.30711427  2.6734375 0.07967828
EEF1 -1.03398779  1.8891674 0.08128579
EEF2 -0.89419883  0.8716892 0.08279281
EEF3 -0.93296574  1.3260497 0.07857508
EEC1 -0.27581240 -0.4959343 0.09008036
EEC2 -0.41715981 -0.4286639 0.09829994
EEC3 -0.37865475 -0.2174569 0.09359441
ADT1 -0.57402680  0.7699548 0.07146652
ADT2 -0.66312767  1.0036774 0.07247784
ADT3 -0.59607506  0.1612733 0.08191708
TR1  -0.08742161 -0.8302237 0.10271994
TR2  -0.12440585 -1.1321737 0.10565655
TR3  -0.11033638 -1.0525237 0.10319191

Normality tests

Non-normality test across all scales

$IM1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89828, p-value = 7.037e-11


$IM2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.8369, p-value = 3.068e-14


$IM3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.84179, p-value = 5.232e-14


$EEF1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.86711, p-value = 1.016e-12


$EEF2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.88319, p-value = 8.227e-12


$EEF3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.87878, p-value = 4.549e-12


$EEC1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93787, p-value = 6.574e-08


$EEC2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93103, p-value = 1.712e-08


$EEC3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93714, p-value = 5.665e-08


$ADT1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89708, p-value = 5.889e-11


$ADT2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89669, p-value = 5.561e-11


$ADT3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.91222, p-value = 6.201e-10


$TR1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93235, p-value = 2.209e-08


$TR2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.92099, p-value = 2.744e-09


$TR3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.92493, p-value = 5.528e-09

Non-normality test on EEF composite


    Shapiro-Wilk normality test

data:  data_filtered$EEF_composite
W = 0.91886, p-value = 1.894e-09

Non-normality test on EEC composite


    Shapiro-Wilk normality test

data:  data_filtered$EEC_composite
W = 0.97719, p-value = 0.001521

Non-normality test on DV per condition

Reward condition on EEF
# A tibble: 2 × 3
  Condition_reward_name     n   shapiro_p
  <chr>                 <int>       <dbl>
1 no_reward               109 0.0000692  
2 performance_reward      105 0.000000224
Reward condition on EEC
# A tibble: 2 × 3
  Condition_reward_name     n shapiro_p
  <chr>                 <int>     <dbl>
1 no_reward               109    0.0785
2 performance_reward      105    0.0148
Eco condition on EEF
# A tibble: 3 × 3
  Condition_eco_name     n shapiro_p
  <chr>              <int>     <dbl>
1 EEC_ori               72 0.0000168
2 EEF_ori               70 0.00165  
3 both_ori              72 0.0000608
Eco condition on EEC
# A tibble: 3 × 3
  Condition_eco_name     n shapiro_p
  <chr>              <int>     <dbl>
1 EEC_ori               72    0.0536
2 EEF_ori               70    0.152 
3 both_ori              72    0.0106

Non-normality test on IM composite


    Shapiro-Wilk normality test

data:  data_filtered$IM_composite
W = 0.93519, p-value = 3.841e-08

Non-normality test on IM per condition

# A tibble: 2 × 3
  Condition_reward_name     n shapiro_p
  <chr>                 <int>     <dbl>
1 no_reward               109 0.0000303
2 performance_reward      105 0.0000587
# A tibble: 3 × 3
  Condition_eco_name     n shapiro_p
  <chr>              <int>     <dbl>
1 EEC_ori               72 0.00132  
2 EEF_ori               70 0.0000113
3 both_ori              72 0.0123   

Factor analyses

KMO

Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = efa_data_good)
Overall MSA =  0.86
MSA for each item = 
 IM1  IM2  IM3 EEF1 EEF2 EEF3 EEC1 EEC2 EEC3 ADT1 ADT2 ADT3  TR1  TR2  TR3 
0.92 0.82 0.85 0.88 0.90 0.91 0.91 0.85 0.82 0.90 0.82 0.86 0.90 0.78 0.82 

Correlation analysis

Bartlett test

R was not square, finding R from data
$chisq
[1] 2708.657

$p.value
[1] 0

$df
[1] 105

Correlation matrix

           IM1        IM2        IM3      EEF1      EEF2      EEF3      EEC1
IM1  1.0000000 0.71262664 0.62823456 0.5727130 0.6361886 0.5979741 0.4588498
IM2  0.7126266 1.00000000 0.76302737 0.3777322 0.4958078 0.4720588 0.3991398
IM3  0.6282346 0.76302737 1.00000000 0.3502518 0.4394806 0.4587153 0.4607446
EEF1 0.5727130 0.37773216 0.35025185 1.0000000 0.8514946 0.8282150 0.5097636
EEF2 0.6361886 0.49580780 0.43948059 0.8514946 1.0000000 0.8353906 0.5242375
EEF3 0.5979741 0.47205876 0.45871527 0.8282150 0.8353906 1.0000000 0.5098388
EEC1 0.4588498 0.39913977 0.46074456 0.5097636 0.5242375 0.5098388 1.0000000
EEC2 0.5003468 0.35475987 0.35004673 0.5006247 0.5496824 0.5188643 0.6055075
EEC3 0.4840296 0.31126891 0.33918961 0.5231259 0.5489536 0.5457312 0.7049909
ADT1 0.3799424 0.18288808 0.16735796 0.3992853 0.3942005 0.3518112 0.3252536
ADT2 0.2674586 0.09396665 0.08038113 0.2982523 0.2722882 0.2651405 0.2601366
ADT3 0.3801755 0.23186565 0.20079144 0.3826485 0.3597516 0.3288763 0.3177411
TR1  0.3045355 0.22072568 0.21972388 0.3030427 0.2938621 0.3049110 0.3056084
TR2  0.2701257 0.14599969 0.12849649 0.2383268 0.2280353 0.2604160 0.1881631
TR3  0.2608877 0.15086114 0.15311072 0.2965969 0.2751431 0.3136058 0.2448330
          EEC2      EEC3      ADT1       ADT2      ADT3       TR1       TR2
IM1  0.5003468 0.4840296 0.3799424 0.26745861 0.3801755 0.3045355 0.2701257
IM2  0.3547599 0.3112689 0.1828881 0.09396665 0.2318656 0.2207257 0.1459997
IM3  0.3500467 0.3391896 0.1673580 0.08038113 0.2007914 0.2197239 0.1284965
EEF1 0.5006247 0.5231259 0.3992853 0.29825231 0.3826485 0.3030427 0.2383268
EEF2 0.5496824 0.5489536 0.3942005 0.27228822 0.3597516 0.2938621 0.2280353
EEF3 0.5188643 0.5457312 0.3518112 0.26514049 0.3288763 0.3049110 0.2604160
EEC1 0.6055075 0.7049909 0.3252536 0.26013655 0.3177411 0.3056084 0.1881631
EEC2 1.0000000 0.8329934 0.3421561 0.27127818 0.3470874 0.3040757 0.2175972
EEC3 0.8329934 1.0000000 0.3841870 0.30223586 0.3431703 0.3441873 0.2714351
ADT1 0.3421561 0.3841870 1.0000000 0.79398707 0.7623848 0.4604202 0.4351735
ADT2 0.2712782 0.3022359 0.7939871 1.00000000 0.7996797 0.4290446 0.4209084
ADT3 0.3470874 0.3431703 0.7623848 0.79967969 1.0000000 0.4403519 0.4020901
TR1  0.3040757 0.3441873 0.4604202 0.42904461 0.4403519 1.0000000 0.8237549
TR2  0.2175972 0.2714351 0.4351735 0.42090838 0.4020901 0.8237549 1.0000000
TR3  0.2248661 0.2959732 0.4475272 0.42286050 0.4638784 0.7947046 0.8698778
           TR3
IM1  0.2608877
IM2  0.1508611
IM3  0.1531107
EEF1 0.2965969
EEF2 0.2751431
EEF3 0.3136058
EEC1 0.2448330
EEC2 0.2248661
EEC3 0.2959732
ADT1 0.4475272
ADT2 0.4228605
ADT3 0.4638784
TR1  0.7947046
TR2  0.8698778
TR3  1.0000000

EFA

Parallel analysis suggests that the number of factors =  5  and the number of components =  NA 
Threshold=0.35

Loadings:
     MR2   MR5   MR3   MR4   MR1  
IM1     NA 0.390    NA 0.636    NA
IM2     NA    NA    NA 0.897    NA
IM3     NA    NA    NA 0.783    NA
EEF1    NA 0.849    NA    NA    NA
EEF2    NA 0.804    NA    NA    NA
EEF3    NA 0.775    NA    NA    NA
EEC1    NA    NA    NA    NA 0.589
EEC2    NA    NA    NA    NA 0.740
EEC3    NA    NA    NA    NA 0.933
ADT1    NA    NA 0.791    NA    NA
ADT2    NA    NA 0.880    NA    NA
ADT3    NA    NA 0.810    NA    NA
TR1  0.807    NA    NA    NA    NA
TR2  0.923    NA    NA    NA    NA
TR3  0.868    NA    NA    NA    NA

               MR2 MR5 MR3 MR4 MR1
SS loadings     NA  NA  NA  NA  NA
Proportion Var  NA  NA  NA  NA  NA
Cumulative Var  NA  NA  NA  NA  NA
Factor Analysis using method =  minres
Call: fa(r = cor(efa_data_good, use = "pairwise.complete.obs"), nfactors = 5, 
    rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix
      MR2  MR5  MR3  MR4  MR1   h2     u2 com
IM1  0.13 0.39 0.20 0.64 0.26 0.68 0.3179 2.4
IM2  0.06 0.20 0.05 0.90 0.13 0.87 0.1314 1.2
IM3  0.07 0.18 0.02 0.78 0.20 0.69 0.3104 1.3
EEF1 0.12 0.85 0.19 0.18 0.26 0.87 0.1288 1.4
EEF2 0.10 0.80 0.17 0.31 0.29 0.86 0.1375 1.7
EEF3 0.15 0.77 0.13 0.30 0.28 0.81 0.1927 1.7
EEC1 0.11 0.29 0.15 0.30 0.59 0.55 0.4475 2.2
EEC2 0.10 0.28 0.16 0.21 0.74 0.71 0.2942 1.6
EEC3 0.15 0.25 0.15 0.13 0.93 1.00 0.0014 1.3
ADT1 0.25 0.19 0.79 0.08 0.17 0.76 0.2371 1.5
ADT2 0.23 0.09 0.88 0.00 0.11 0.85 0.1502 1.2
ADT3 0.24 0.15 0.81 0.14 0.14 0.78 0.2248 1.4
TR1  0.81 0.10 0.24 0.13 0.17 0.77 0.2346 1.4
TR2  0.92 0.08 0.21 0.06 0.07 0.91 0.0904 1.1
TR3  0.87 0.14 0.24 0.05 0.09 0.84 0.1598 1.2

                       MR2  MR5  MR3  MR4  MR1
SS loadings           2.55 2.52 2.42 2.24 2.23
Proportion Var        0.17 0.17 0.16 0.15 0.15
Cumulative Var        0.17 0.34 0.50 0.65 0.80
Proportion Explained  0.21 0.21 0.20 0.19 0.19
Cumulative Proportion 0.21 0.42 0.63 0.81 1.00

Mean item complexity =  1.5
Test of the hypothesis that 5 factors are sufficient.

df null model =  105  with the objective function =  13.07
df of  the model are 40  and the objective function was  0.23 

The root mean square of the residuals (RMSR) is  0.01 
The df corrected root mean square of the residuals is  0.02 

Fit based upon off diagonal values = 1
Measures of factor score adequacy             
                                                   MR2  MR5  MR3  MR4  MR1
Correlation of (regression) scores with factors   0.97 0.95 0.95 0.94 1.00
Multiple R square of scores with factors          0.93 0.90 0.89 0.89 1.00
Minimum correlation of possible factor scores     0.86 0.79 0.79 0.77 0.99

Loading required namespace: GPArotation
Threshold = 0.35

Loadings:
     MR1   MR2   MR3   MR5   MR4  
IM1     NA    NA    NA    NA 0.574
IM2     NA    NA    NA    NA 0.951
IM3     NA    NA    NA    NA 0.816
EEF1 0.971    NA    NA    NA    NA
EEF2 0.875    NA    NA    NA    NA
EEF3 0.842    NA    NA    NA    NA
EEC1    NA    NA    NA 0.572    NA
EEC2    NA    NA    NA 0.774    NA
EEC3    NA    NA    NA 1.032    NA
ADT1    NA    NA 0.820    NA    NA
ADT2    NA    NA 0.954    NA    NA
ADT3    NA    NA 0.857    NA    NA
TR1     NA 0.825    NA    NA    NA
TR2     NA 0.980    NA    NA    NA
TR3     NA 0.903    NA    NA    NA

               MR1 MR2 MR3 MR5 MR4
SS loadings     NA  NA  NA  NA  NA
Proportion Var  NA  NA  NA  NA  NA
Cumulative Var  NA  NA  NA  NA  NA

Factor Correlation Matrix:
      1     2     3     4     5
1 1.000 0.310 0.399 0.607 0.530
2 0.310 1.000 0.516 0.312 0.198
3 0.399 0.516 1.000 0.384 0.203
4 0.607 0.312 0.384 1.000 0.418
5 0.530 0.198 0.203 0.418 1.000

      1     2     3     4     5
1 1.000 0.311 0.399 0.610 0.531
2 0.311 1.000 0.517 0.314 0.198
3 0.399 0.517 1.000 0.386 0.205
4 0.610 0.314 0.386 1.000 0.419
5 0.531 0.198 0.205 0.419 1.000

CFA

lavaan 0.6-19 ended normally after 49 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        40

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               175.241     160.591
  Degrees of freedom                                80          80
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.091
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              2798.001    1963.914
  Degrees of freedom                               105         105
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.425

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.965       0.957
  Tucker-Lewis Index (TLI)                       0.954       0.943
                                                                  
  Robust Comparative Fit Index (CFI)                         0.967
  Robust Tucker-Lewis Index (TLI)                            0.956

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3958.712   -3958.712
  Scaling correction factor                                  2.043
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -3871.091   -3871.091
  Scaling correction factor                                  1.408
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                7997.424    7997.424
  Bayesian (BIC)                              8132.063    8132.063
  Sample-size adjusted Bayesian (SABIC)       8005.313    8005.313

Root Mean Square Error of Approximation:

  RMSEA                                          0.075       0.069
  90 Percent confidence interval - lower         0.060       0.054
  90 Percent confidence interval - upper         0.090       0.083
  P-value H_0: RMSEA <= 0.050                    0.004       0.021
  P-value H_0: RMSEA >= 0.080                    0.287       0.104
                                                                  
  Robust RMSEA                                               0.072
  90 Percent confidence interval - lower                     0.055
  90 Percent confidence interval - upper                     0.088
  P-value H_0: Robust RMSEA <= 0.050                         0.016
  P-value H_0: Robust RMSEA >= 0.080                         0.205

Standardized Root Mean Square Residual:

  SRMR                                           0.061       0.061

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC =~                                                                
    EEC1              1.000                               1.000    1.000
    EEC2              1.287    0.108   11.932    0.000    1.076    1.499
    EEC3              1.332    0.093   14.258    0.000    1.149    1.515
  EEF =~                                                                
    EEF1              1.000                               1.000    1.000
    EEF2              1.045    0.053   19.733    0.000    0.941    1.149
    EEF3              0.961    0.056   17.299    0.000    0.852    1.070
  ADT =~                                                                
    ADT1              1.000                               1.000    1.000
    ADT2              1.037    0.068   15.299    0.000    0.904    1.170
    ADT3              1.147    0.076   15.133    0.000    0.998    1.295
  IM =~                                                                 
    IM1               1.000                               1.000    1.000
    IM2               0.999    0.166    6.036    0.000    0.675    1.324
    IM3               1.001    0.186    5.387    0.000    0.637    1.365
  TR =~                                                                 
    TR1               1.000                               1.000    1.000
    TR2               1.110    0.055   20.135    0.000    1.002    1.218
    TR3               1.060    0.058   18.145    0.000    0.945    1.174
   Std.lv  Std.all
                  
    0.973    0.740
    1.252    0.873
    1.295    0.948
                  
    1.079    0.909
    1.127    0.933
    1.037    0.904
                  
    0.918    0.880
    0.952    0.900
    1.052    0.880
                  
    0.952    0.819
    0.952    0.884
    0.953    0.819
                  
    1.309    0.873
    1.452    0.942
    1.386    0.921

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC ~~                                                                
    EEF               0.674    0.121    5.566    0.000    0.437    0.911
    ADT               0.366    0.085    4.307    0.000    0.200    0.533
    IM                0.458    0.139    3.293    0.001    0.186    0.731
    TR                0.417    0.103    4.040    0.000    0.215    0.619
  EEF ~~                                                                
    ADT               0.408    0.102    4.021    0.000    0.209    0.607
    IM                0.641    0.163    3.933    0.000    0.322    0.960
    TR                0.451    0.113    3.997    0.000    0.230    0.672
  ADT ~~                                                                
    IM                0.240    0.116    2.077    0.038    0.014    0.467
    TR                0.635    0.106    6.018    0.000    0.428    0.842
  IM ~~                                                                 
    TR                0.305    0.137    2.235    0.025    0.038    0.573
   Std.lv  Std.all
                  
    0.642    0.642
    0.410    0.410
    0.495    0.495
    0.327    0.327
                  
    0.412    0.412
    0.624    0.624
    0.320    0.320
                  
    0.275    0.275
    0.529    0.529
                  
    0.245    0.245

Variances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
   .EEC1              0.782    0.093    8.420    0.000    0.600    0.965
   .EEC2              0.491    0.104    4.732    0.000    0.287    0.694
   .EEC3              0.188    0.061    3.070    0.002    0.068    0.308
   .EEF1              0.244    0.045    5.397    0.000    0.155    0.332
   .EEF2              0.190    0.047    4.072    0.000    0.098    0.281
   .EEF3              0.240    0.063    3.788    0.000    0.116    0.364
   .ADT1              0.246    0.057    4.344    0.000    0.135    0.357
   .ADT2              0.213    0.053    4.003    0.000    0.109    0.317
   .ADT3              0.322    0.088    3.647    0.000    0.149    0.495
   .IM1               0.444    0.172    2.589    0.010    0.108    0.781
   .IM2               0.252    0.075    3.350    0.001    0.105    0.400
   .IM3               0.444    0.220    2.019    0.043    0.013    0.875
   .TR1               0.535    0.101    5.302    0.000    0.337    0.733
   .TR2               0.269    0.068    3.946    0.000    0.135    0.402
   .TR3               0.346    0.088    3.945    0.000    0.174    0.518
    EEC               0.946    0.148    6.373    0.000    0.655    1.237
    EEF               1.164    0.185    6.288    0.000    0.801    1.527
    ADT               0.842    0.124    6.812    0.000    0.600    1.084
    IM                0.907    0.217    4.182    0.000    0.482    1.332
    TR                1.712    0.186    9.230    0.000    1.349    2.076
   Std.lv  Std.all
    0.782    0.453
    0.491    0.238
    0.188    0.101
    0.244    0.173
    0.190    0.130
    0.240    0.183
    0.246    0.226
    0.213    0.190
    0.322    0.225
    0.444    0.329
    0.252    0.218
    0.444    0.328
    0.535    0.238
    0.269    0.113
    0.346    0.152
    1.000    1.000
    1.000    1.000
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.547
    EEC2              0.762
    EEC3              0.899
    EEF1              0.827
    EEF2              0.870
    EEF3              0.817
    ADT1              0.774
    ADT2              0.810
    ADT3              0.775
    IM1               0.671
    IM2               0.782
    IM3               0.672
    TR1               0.762
    TR2               0.887
    TR3               0.848
Cronbach’s Alpha:
  EEC   EEF   ADT    IM    TR 
0.883 0.939 0.914 0.874 0.936 
Omega:
  EEC   EEF   ADT    IM    TR 
0.902 0.939 0.917 0.882 0.938 
Average Variance Extracted (AVE):
  EEC   EEF   ADT    IM    TR 
0.742 0.839 0.785 0.705 0.833 
$type
[1] "cor.bentler"

$cov
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.040  0.000                                                        
EEC3  0.003  0.005  0.000                                                 
EEF1  0.078 -0.009 -0.031  0.000                                          
EEF2  0.081  0.027 -0.019  0.003  0.000                                   
EEF3  0.080  0.012 -0.005  0.006 -0.008  0.000                            
ADT1  0.058  0.027  0.042  0.069  0.056  0.024  0.000                     
ADT2 -0.013 -0.051 -0.048 -0.039 -0.074 -0.070  0.002  0.000              
ADT3  0.051  0.032  0.001  0.053  0.021  0.001 -0.012  0.008  0.000       
IM1   0.159  0.146  0.100  0.108  0.159  0.136  0.182  0.065  0.182  0.000
IM2   0.075 -0.027 -0.104 -0.124 -0.019 -0.027 -0.031 -0.125  0.018 -0.012
IM3   0.161 -0.004 -0.045 -0.115 -0.037 -0.003 -0.031 -0.122  0.003 -0.043
TR1   0.094  0.055  0.073  0.049  0.034  0.053  0.054  0.014  0.034  0.129
TR2  -0.040 -0.052 -0.021 -0.035 -0.053 -0.012 -0.003 -0.027 -0.036  0.081
TR3   0.022 -0.038  0.010  0.029  0.001  0.048  0.019 -0.015  0.035  0.076
        IM2    IM3    TR1    TR2    TR3
EEC1                                   
EEC2                                   
EEC3                                   
EEF1                                   
EEF2                                   
EEF3                                   
ADT1                                   
ADT2                                   
ADT3                                   
IM1                                    
IM2   0.000                            
IM3   0.038  0.000                     
TR1   0.032  0.044  0.000              
TR2  -0.058 -0.061  0.002  0.000       
TR3  -0.049 -0.032 -0.009  0.003  0.000

$cov.z
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.776  0.000                                                        
EEC3  0.067  0.068  0.000                                                 
EEF1  0.963 -0.095 -0.304  0.000                                          
EEF2  1.141  0.293 -0.196  0.028  0.000                                   
EEF3  1.119  0.142 -0.053  0.057 -0.082  0.000                            
ADT1  0.882  0.351  0.545  0.821  0.612  0.250  0.000                     
ADT2 -0.196 -0.659 -0.614 -0.435 -0.811 -0.720  0.027  0.000              
ADT3  0.780  0.422  0.010  0.605  0.229  0.007 -0.136  0.089  0.000       
IM1   2.501  2.255  1.533  1.266  1.898  1.605  2.128  0.777  2.220  0.000
IM2   1.601 -0.492 -1.946 -1.596 -0.309 -0.451 -0.637 -2.693  0.396 -0.236
IM3   2.402 -0.068 -0.787 -1.434 -0.569 -0.058 -0.562 -2.256  0.049 -0.928
TR1   1.463  0.911  1.217  0.774  0.501  0.778  0.857  0.226  0.543  1.791
TR2  -0.612 -0.791 -0.334 -0.473 -0.699 -0.154 -0.043 -0.419 -0.530  1.297
TR3   0.341 -0.613  0.170  0.429  0.010  0.669  0.288 -0.242  0.556  1.107
        IM2    IM3    TR1    TR2    TR3
EEC1                                   
EEC2                                   
EEC3                                   
EEF1                                   
EEF2                                   
EEF3                                   
ADT1                                   
ADT2                                   
ADT3                                   
IM1                                    
IM2   0.000                            
IM3   0.639  0.000                     
TR1   0.680  0.829  0.000              
TR2  -1.327 -1.298  0.041  0.000       
TR3  -1.010 -0.614 -0.252  0.059  0.000

$summary
                           cov
srmr                     0.061
srmr.se                  0.035
srmr.exactfit.z          0.000
srmr.exactfit.pvalue     0.500
usrmr                    0.000
usrmr.se                 0.059
usrmr.ci.lower          -0.097
usrmr.ci.upper           0.097
usrmr.closefit.h0.value  0.050
usrmr.closefit.z        -0.850
usrmr.closefit.pvalue    0.802

SEM

No mediation

No moderation - using individual items
lavaan 0.6-19 ended normally after 54 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        29

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               212.944     200.701
  Degrees of freedom                                61          61
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.061
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.902       0.878
  Tucker-Lewis Index (TLI)                       0.870       0.838
                                                                  
  Robust Comparative Fit Index (CFI)                         0.903
  Robust Tucker-Lewis Index (TLI)                            0.871

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2410.470   -2410.470
  Scaling correction factor                                  1.964
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4878.940    4878.940
  Bayesian (BIC)                              4976.553    4976.553
  Sample-size adjusted Bayesian (SABIC)       4884.660    4884.660

Root Mean Square Error of Approximation:

  RMSEA                                          0.108       0.103
  90 Percent confidence interval - lower         0.092       0.088
  90 Percent confidence interval - upper         0.124       0.119
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.998       0.994
                                                                  
  Robust RMSEA                                               0.107
  90 Percent confidence interval - lower                     0.090
  90 Percent confidence interval - upper                     0.123
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.996

Standardized Root Mean Square Residual:

  SRMR                                           0.194       0.194

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.086    0.916
    EEF2              1.033    0.052   20.016    0.000    1.122    0.928
    EEF3              0.953    0.055   17.192    0.000    1.035    0.903
  EEC =~                                                                
    EEC1              1.000                               0.970    0.738
    EEC2              1.292    0.108   11.960    0.000    1.253    0.873
    EEC3              1.336    0.093   14.406    0.000    1.296    0.949
  IM =~                                                                 
    IM1               1.000                               0.890    0.766
    IM2               1.124    0.160    7.041    0.000    1.001    0.930
    IM3               1.071    0.160    6.703    0.000    0.954    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    reward1_eco1      0.320    0.232    1.382    0.167    0.295    0.107
    reward0_eco2      0.028    0.247    0.113    0.910    0.026    0.010
    reward1_eco2      0.281    0.221    1.270    0.204    0.258    0.097
    reward0_eco3     -0.298    0.226   -1.318    0.187   -0.275   -0.103
    reward1_eco3     -0.241    0.257   -0.937    0.349   -0.222   -0.083
  EEC ~                                                                 
    reward1_eco1      0.308    0.216    1.427    0.153    0.318    0.115
    reward0_eco2      0.284    0.243    1.170    0.242    0.293    0.109
    reward1_eco2      0.369    0.222    1.665    0.096    0.380    0.142
    reward0_eco3      0.003    0.198    0.013    0.989    0.003    0.001
    reward1_eco3     -0.113    0.236   -0.480    0.631   -0.117   -0.044

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF ~~                                                                
   .EEC               0.639    0.111    5.752    0.000    0.632    0.632

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.227    0.045    5.040    0.000    0.227    0.161
   .EEF2              0.202    0.050    4.038    0.000    0.202    0.138
   .EEF3              0.243    0.064    3.805    0.000    0.243    0.185
   .EEC1              0.788    0.092    8.525    0.000    0.788    0.456
   .EEC2              0.488    0.104    4.717    0.000    0.488    0.237
   .EEC3              0.186    0.060    3.119    0.002    0.186    0.100
   .IM1               0.559    0.154    3.634    0.000    0.559    0.413
   .IM2               0.156    0.050    3.096    0.002    0.156    0.134
   .IM3               0.443    0.202    2.190    0.029    0.443    0.327
   .EEF               1.126    0.177    6.360    0.000    0.954    0.954
   .EEC               0.907    0.139    6.520    0.000    0.964    0.964
    IM                0.793    0.185    4.279    0.000    1.000    1.000

R-Square:
                   Estimate
    EEF1              0.839
    EEF2              0.862
    EEF3              0.815
    EEC1              0.544
    EEC2              0.763
    EEC3              0.900
    IM1               0.587
    IM2               0.866
    IM3               0.673
    EEF               0.046
    EEC               0.036
No moderation - using composite variables
lavaan 0.6-19 ended normally after 14 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        13

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Model Test Baseline Model:

  Test statistic                               117.595     117.789
  Degrees of freedom                                11          11
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.998

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.000       1.000
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -617.053    -617.053
  Loglikelihood unrestricted model (H1)       -617.053    -617.053
                                                                  
  Akaike (AIC)                                1260.105    1260.105
  Bayesian (BIC)                              1303.863    1303.863
  Sample-size adjusted Bayesian (SABIC)       1262.669    1262.669

Root Mean Square Error of Approximation:

  RMSEA                                          0.000          NA
  90 Percent confidence interval - lower         0.000          NA
  90 Percent confidence interval - upper         0.000          NA
  P-value H_0: RMSEA <= 0.050                       NA          NA
  P-value H_0: RMSEA >= 0.080                       NA          NA
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.000
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000       0.000

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF_composite ~                                                       
    reward1_eco1      0.320    0.227    1.406    0.160    0.320    0.104
    reward0_eco2      0.029    0.245    0.119    0.905    0.029    0.010
    reward1_eco2      0.279    0.221    1.265    0.206    0.279    0.094
    reward0_eco3     -0.295    0.224   -1.313    0.189   -0.295   -0.099
    reward1_eco3     -0.248    0.255   -0.973    0.331   -0.248   -0.083
  EEC_composite ~                                                       
    reward1_eco1      0.385    0.267    1.443    0.149    0.385    0.112
    reward0_eco2      0.419    0.294    1.424    0.155    0.419    0.127
    reward1_eco2      0.549    0.253    2.171    0.030    0.549    0.166
    reward0_eco3      0.049    0.242    0.201    0.840    0.049    0.015
    reward1_eco3     -0.118    0.286   -0.412    0.680   -0.118   -0.036

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.804    0.119    6.753    0.000    0.804    0.609

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF_composite     1.190    0.156    7.613    0.000    1.190    0.957
   .EEC_composite     1.464    0.134   10.921    0.000    1.464    0.960

R-Square:
                   Estimate
    EEF_composite     0.043
    EEC_composite     0.040

Only reward

lavaan 0.6-19 ended normally after 34 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               186.567     162.707
  Degrees of freedom                                33          33
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.147
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1598.761     986.859
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.620

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.901       0.862
  Tucker-Lewis Index (TLI)                       0.865       0.812
                                                                  
  Robust Comparative Fit Index (CFI)                         0.903
  Robust Tucker-Lewis Index (TLI)                            0.867

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2415.866   -2415.866
  Scaling correction factor                                  2.330
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2322.583   -2322.583
  Scaling correction factor                                  1.607
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4873.732    4873.732
  Bayesian (BIC)                              4944.418    4944.418
  Sample-size adjusted Bayesian (SABIC)       4877.874    4877.874

Root Mean Square Error of Approximation:

  RMSEA                                          0.147       0.136
  90 Percent confidence interval - lower         0.127       0.116
  90 Percent confidence interval - upper         0.168       0.155
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    1.000       1.000
                                                                  
  Robust RMSEA                                               0.145
  90 Percent confidence interval - lower                     0.123
  90 Percent confidence interval - upper                     0.168
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.262       0.262

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.086    0.915
    EEF2              1.034    0.052   19.856    0.000    1.123    0.929
    EEF3              0.953    0.055   17.218    0.000    1.035    0.903
  EEC =~                                                                
    EEC1              1.000                               0.968    0.736
    EEC2              1.290    0.108   11.992    0.000    1.249    0.870
    EEC3              1.345    0.094   14.378    0.000    1.301    0.953
  IM =~                                                                 
    IM1               1.000                               0.890    0.766
    IM2               1.124    0.160    7.041    0.000    1.001    0.930
    IM3               1.071    0.160    6.703    0.000    0.954    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    Condition_rwrd    0.204    0.152    1.341    0.180    0.188    0.094
  EEC ~                                                                 
    Condition_rwrd    0.091    0.138    0.657    0.511    0.094    0.047

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF ~~                                                                
   .EEC               0.667    0.122    5.465    0.000    0.638    0.638

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.228    0.045    5.094    0.000    0.228    0.162
   .EEF2              0.200    0.050    3.999    0.000    0.200    0.137
   .EEF3              0.244    0.064    3.824    0.000    0.244    0.185
   .EEC1              0.792    0.093    8.519    0.000    0.792    0.458
   .EEC2              0.499    0.104    4.805    0.000    0.499    0.243
   .EEC3              0.172    0.059    2.926    0.003    0.172    0.092
   .IM1               0.559    0.154    3.634    0.000    0.559    0.413
   .IM2               0.156    0.050    3.096    0.002    0.156    0.134
   .IM3               0.443    0.202    2.190    0.029    0.443    0.327
   .EEF               1.169    0.187    6.234    0.000    0.991    0.991
   .EEC               0.935    0.147    6.361    0.000    0.998    0.998
    IM                0.793    0.185    4.279    0.000    1.000    1.000

R-Square:
                   Estimate
    EEF1              0.838
    EEF2              0.863
    EEF3              0.815
    EEC1              0.542
    EEC2              0.757
    EEC3              0.908
    IM1               0.587
    IM2               0.866
    IM3               0.673
    EEF               0.009
    EEC               0.002

Only eco-conditions - as predictors

lavaan 0.6-19 ended normally after 40 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        23

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               196.426     181.437
  Degrees of freedom                                40          40
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.083
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1615.752    1086.268
  Degrees of freedom                                54          54
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.487

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.900       0.863
  Tucker-Lewis Index (TLI)                       0.865       0.815
                                                                  
  Robust Comparative Fit Index (CFI)                         0.900
  Robust Tucker-Lewis Index (TLI)                            0.865

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2412.300   -2412.300
  Scaling correction factor                                  2.213
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2314.087   -2314.087
  Scaling correction factor                                  1.495
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4870.600    4870.600
  Bayesian (BIC)                              4948.018    4948.018
  Sample-size adjusted Bayesian (SABIC)       4875.136    4875.136

Root Mean Square Error of Approximation:

  RMSEA                                          0.135       0.129
  90 Percent confidence interval - lower         0.117       0.111
  90 Percent confidence interval - upper         0.154       0.147
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    1.000       1.000
                                                                  
  Robust RMSEA                                               0.134
  90 Percent confidence interval - lower                     0.114
  90 Percent confidence interval - upper                     0.154
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.245       0.245

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.087    0.916
    EEF2              1.032    0.052   20.012    0.000    1.121    0.928
    EEF3              0.953    0.056   17.097    0.000    1.036    0.903
  EEC =~                                                                
    EEC1              1.000                               0.970    0.738
    EEC2              1.290    0.107   12.000    0.000    1.251    0.872
    EEC3              1.339    0.093   14.353    0.000    1.298    0.950
  IM =~                                                                 
    IM1               1.000                               0.890    0.766
    IM2               1.124    0.160    7.041    0.000    1.001    0.930
    IM3               1.071    0.160    6.703    0.000    0.954    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    Condition_both   -0.421    0.183   -2.304    0.021   -0.387   -0.183
    Condition_EEC     0.003    0.177    0.018    0.986    0.003    0.001
  EEC ~                                                                 
    Condition_both   -0.201    0.160   -1.258    0.208   -0.207   -0.098
    Condition_EEC     0.179    0.171    1.047    0.295    0.185    0.087

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF ~~                                                                
   .EEC               0.647    0.112    5.757    0.000    0.633    0.633

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.227    0.045    5.018    0.000    0.227    0.161
   .EEF2              0.203    0.050    4.059    0.000    0.203    0.139
   .EEF3              0.242    0.064    3.791    0.000    0.242    0.184
   .EEC1              0.788    0.093    8.510    0.000    0.788    0.456
   .EEC2              0.494    0.102    4.823    0.000    0.494    0.240
   .EEC3              0.181    0.059    3.054    0.002    0.181    0.097
   .IM1               0.559    0.154    3.634    0.000    0.559    0.413
   .IM2               0.156    0.050    3.096    0.002    0.156    0.134
   .IM3               0.443    0.202    2.190    0.029    0.443    0.327
   .EEF               1.141    0.177    6.452    0.000    0.966    0.966
   .EEC               0.916    0.141    6.509    0.000    0.974    0.974
    IM                0.793    0.185    4.279    0.000    1.000    1.000
   lhs op            rhs    est    se      z pvalue ci.lower ci.upper std.lv
10 EEF  ~ Condition_both -0.421 0.183 -2.304  0.021   -0.779   -0.063 -0.387
11 EEF  ~  Condition_EEC  0.003 0.177  0.018  0.986   -0.344    0.350  0.003
12 EEC  ~ Condition_both -0.201 0.160 -1.258  0.208   -0.514    0.112 -0.207
13 EEC  ~  Condition_EEC  0.179 0.171  1.047  0.295   -0.156    0.515  0.185
   std.all std.nox
10  -0.183  -0.387
11   0.001   0.003
12  -0.098  -0.207
13   0.087   0.185

Only EEF

lavaan 0.6-19 ended normally after 29 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 6.372       6.056
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.783       0.811
  Scaling correction factor                                  1.052
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               586.644     458.910
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.278

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.011       1.016
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.013

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -727.189    -727.189
  Scaling correction factor                                  1.599
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -724.003    -724.003
  Scaling correction factor                                  1.339
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1476.378    1476.378
  Bayesian (BIC)                              1513.404    1513.404
  Sample-size adjusted Bayesian (SABIC)       1478.548    1478.548

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.050       0.045
  P-value H_0: RMSEA <= 0.050                    0.951       0.963
  P-value H_0: RMSEA >= 0.080                    0.004       0.002
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.048
  P-value H_0: Robust RMSEA <= 0.050                         0.956
  P-value H_0: Robust RMSEA >= 0.080                         0.004

Standardized Root Mean Square Residual:

  SRMR                                           0.011       0.011

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.090    0.919
    EEF2              1.027    0.051   20.078    0.000    1.119    0.926
    EEF3              0.949    0.057   16.663    0.000    1.034    0.902

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    reward1_eco1      0.320    0.232    1.378    0.168    0.294    0.106
    reward0_eco2      0.026    0.248    0.104    0.917    0.024    0.009
    reward1_eco2      0.279    0.222    1.257    0.209    0.256    0.096
    reward0_eco3     -0.300    0.227   -1.323    0.186   -0.276   -0.103
    reward1_eco3     -0.244    0.258   -0.944    0.345   -0.224   -0.084

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.220    0.046    4.733    0.000    0.220    0.156
   .EEF2              0.207    0.052    3.979    0.000    0.207    0.142
   .EEF3              0.245    0.066    3.710    0.000    0.245    0.186
   .EEF               1.133    0.177    6.399    0.000    0.954    0.954

R-Square:
                   Estimate
    EEF1              0.844
    EEF2              0.858
    EEF3              0.814
    EEF               0.046

Only EEC

lavaan 0.6-19 ended normally after 31 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                12.579      12.705
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.248       0.241
  Scaling correction factor                                  0.990
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               419.779     376.677
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.114

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.994       0.992
  Tucker-Lewis Index (TLI)                       0.988       0.986
                                                                  
  Robust Comparative Fit Index (CFI)                         0.993
  Robust Tucker-Lewis Index (TLI)                            0.988

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -909.881    -909.881
  Scaling correction factor                                  1.148
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -903.592    -903.592
  Scaling correction factor                                  1.073
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1841.763    1841.763
  Bayesian (BIC)                              1878.789    1878.789
  Sample-size adjusted Bayesian (SABIC)       1843.932    1843.932

Root Mean Square Error of Approximation:

  RMSEA                                          0.035       0.036
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.086       0.087
  P-value H_0: RMSEA <= 0.050                    0.626       0.617
  P-value H_0: RMSEA >= 0.080                    0.080       0.084
                                                                  
  Robust RMSEA                                               0.035
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.086
  P-value H_0: Robust RMSEA <= 0.050                         0.621
  P-value H_0: Robust RMSEA >= 0.080                         0.081

Standardized Root Mean Square Residual:

  SRMR                                           0.023       0.023

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.947    0.720
    EEC2              1.291    0.106   12.136    0.000    1.222    0.852
    EEC3              1.410    0.108   13.109    0.000    1.335    0.977

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~                                                                 
    reward1_eco1      0.286    0.209    1.372    0.170    0.302    0.109
    reward0_eco2      0.246    0.233    1.058    0.290    0.260    0.097
    reward1_eco2      0.316    0.220    1.438    0.150    0.334    0.125
    reward0_eco3     -0.028    0.191   -0.149    0.882   -0.030   -0.011
    reward1_eco3     -0.100    0.230   -0.437    0.662   -0.106   -0.040

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.831    0.093    8.896    0.000    0.831    0.481
   .EEC2              0.564    0.123    4.568    0.000    0.564    0.274
   .EEC3              0.083    0.076    1.100    0.271    0.083    0.045
   .EEC               0.869    0.137    6.328    0.000    0.969    0.969

R-Square:
                   Estimate
    EEC1              0.519
    EEC2              0.726
    EEC3              0.955
    EEC               0.031

Mediation

Non-connected DVs

Simple mediation on both dependent variables
lavaan 0.6-19 ended normally after 55 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        36

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               124.251     121.729
  Degrees of freedom                                54          54
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.021
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.941
  Tucker-Lewis Index (TLI)                       0.932       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2366.123   -2366.123
  Scaling correction factor                                  1.849
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4804.246    4804.246
  Bayesian (BIC)                              4925.421    4925.421
  Sample-size adjusted Bayesian (SABIC)       4811.346    4811.346

Root Mean Square Error of Approximation:

  RMSEA                                          0.078       0.077
  90 Percent confidence interval - lower         0.060       0.059
  90 Percent confidence interval - upper         0.096       0.095
  P-value H_0: RMSEA <= 0.050                    0.007       0.009
  P-value H_0: RMSEA >= 0.080                    0.444       0.393
                                                                  
  Robust RMSEA                                               0.077
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.096
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.423

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.023    0.000    1.128    0.933
    EEF3              0.962    0.054   17.770    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.947    0.814
    IM2               1.008    0.159    6.345    0.000    0.954    0.887
    IM3               1.011    0.178    5.669    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.321    0.217    1.477    0.140    0.339    0.122
    reward0_eco2      0.311    0.219    1.421    0.155    0.328    0.123
    reward1_eco2      0.405    0.194    2.086    0.037    0.428    0.160
    reward0_eco3     -0.085    0.261   -0.324    0.746   -0.089   -0.033
    reward1_eco3     -0.231    0.249   -0.927    0.354   -0.243   -0.091
  EEF ~                                                                 
    IM                0.697    0.075    9.275    0.000    0.612    0.612
    reward1_eco1      0.097    0.185    0.522    0.602    0.090    0.032
    reward0_eco2     -0.184    0.203   -0.909    0.363   -0.171   -0.064
    reward1_eco2      0.002    0.195    0.008    0.994    0.001    0.001
    reward0_eco3     -0.234    0.178   -1.312    0.189   -0.217   -0.081
    reward1_eco3     -0.073    0.205   -0.353    0.724   -0.067   -0.025
  EEC ~                                                                 
    IM                0.492    0.075    6.547    0.000    0.478    0.478
    reward1_eco1      0.154    0.205    0.748    0.454    0.158    0.057
    reward0_eco2      0.136    0.221    0.617    0.537    0.140    0.052
    reward1_eco2      0.178    0.214    0.831    0.406    0.182    0.068
    reward0_eco3      0.049    0.184    0.267    0.789    0.050    0.019
    reward1_eco3     -0.002    0.222   -0.007    0.994   -0.002   -0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.352    0.107    3.281    0.001    0.498    0.498

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.602    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.109
   .EEF1              0.246    0.046    5.369    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.097    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.805    0.000    0.240    0.183
   .IM1               0.455    0.164    2.769    0.006    0.455    0.337
   .IM2               0.248    0.067    3.672    0.000    0.248    0.214
   .IM3               0.436    0.212    2.054    0.040    0.436    0.323
   .EEC               0.710    0.115    6.173    0.000    0.749    0.749
   .EEF               0.701    0.165    4.250    0.000    0.603    0.603
   .IM                0.840    0.205    4.107    0.000    0.937    0.937

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.663
    IM2               0.786
    IM3               0.677
    EEC               0.251
    EEF               0.397
    IM                0.063
Simple mediation on both dependent variables
lavaan 0.6-19 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Model Test Baseline Model:

  Test statistic                               221.582     210.615
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.052

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.000       1.000
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -871.672    -871.672
  Loglikelihood unrestricted model (H1)       -871.672    -871.672
                                                                  
  Akaike (AIC)                                1785.345    1785.345
  Bayesian (BIC)                              1856.030    1856.030
  Sample-size adjusted Bayesian (SABIC)       1789.487    1789.487

Root Mean Square Error of Approximation:

  RMSEA                                          0.000          NA
  90 Percent confidence interval - lower         0.000          NA
  90 Percent confidence interval - upper         0.000          NA
  P-value H_0: RMSEA <= 0.050                       NA          NA
  P-value H_0: RMSEA >= 0.080                       NA          NA
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.000
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000       0.000

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.301    0.220    1.366    0.172    0.301    0.107
    reward0_eco2      0.324    0.221    1.462    0.144    0.324    0.119
    reward1_eco2      0.398    0.197    2.018    0.044    0.398    0.147
    reward0_eco3     -0.084    0.264   -0.318    0.751   -0.084   -0.031
    reward1_eco3     -0.232    0.251   -0.923    0.356   -0.232   -0.086
  EEF_composite ~                                                       
    IM_composite      0.625    0.068    9.145    0.000    0.625    0.568
    reward1_eco1      0.132    0.186    0.707    0.480    0.132    0.043
    reward0_eco2     -0.173    0.205   -0.843    0.399   -0.173   -0.058
    reward1_eco2      0.031    0.191    0.161    0.872    0.031    0.010
    reward0_eco3     -0.242    0.180   -1.346    0.178   -0.242   -0.081
    reward1_eco3     -0.104    0.205   -0.504    0.614   -0.104   -0.035
  EEC_composite ~                                                       
    IM_composite      0.592    0.072    8.179    0.000    0.592    0.486
    reward1_eco1      0.206    0.246    0.839    0.401    0.206    0.060
    reward0_eco2      0.227    0.262    0.868    0.386    0.227    0.069
    reward1_eco2      0.313    0.239    1.313    0.189    0.313    0.095
    reward0_eco3      0.098    0.212    0.464    0.643    0.098    0.030
    reward1_eco3      0.020    0.261    0.075    0.940    0.020    0.006

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.444    0.096    4.625    0.000    0.444    0.466

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.973    0.126    7.710    0.000    0.973    0.946
   .EEF_composite     0.810    0.124    6.525    0.000    0.810    0.651
   .EEC_composite     1.123    0.116    9.704    0.000    1.123    0.736

R-Square:
                   Estimate
    IM_composite      0.054
    EEF_composite     0.349
    EEC_composite     0.264
Simple mediation on both dependent variables
lavaan 0.6-19 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 7.341       7.259
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.693       0.701
  Scaling correction factor                                  1.011
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               221.582     210.615
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.052

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.024       1.026
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.025

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -875.343    -875.343
  Scaling correction factor                                  1.222
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -871.672    -871.672
  Scaling correction factor                                  1.122
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1772.686    1772.686
  Bayesian (BIC)                              1809.712    1809.712
  Sample-size adjusted Bayesian (SABIC)       1774.855    1774.855

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.058       0.057
  P-value H_0: RMSEA <= 0.050                    0.919       0.923
  P-value H_0: RMSEA >= 0.080                    0.008       0.007
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.057
  P-value H_0: Robust RMSEA <= 0.050                         0.921
  P-value H_0: Robust RMSEA >= 0.080                         0.008

Standardized Root Mean Square Residual:

  SRMR                                           0.024       0.024

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.301    0.220    1.366    0.172    0.301    0.107
    reward0_eco2      0.324    0.221    1.462    0.144    0.324    0.119
    reward1_eco2      0.398    0.197    2.018    0.044    0.398    0.147
    reward0_eco3     -0.084    0.264   -0.318    0.751   -0.084   -0.031
    reward1_eco3     -0.232    0.251   -0.923    0.356   -0.232   -0.086
  EEF_composite ~                                                       
    IM_composite      0.638    0.070    9.154    0.000    0.638    0.580
  EEC_composite ~                                                       
    IM_composite      0.616    0.073    8.481    0.000    0.616    0.506

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.447    0.096    4.675    0.000    0.447    0.462

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.973    0.126    7.710    0.000    0.973    0.946
   .EEF_composite     0.825    0.124    6.670    0.000    0.825    0.664
   .EEC_composite     1.136    0.115    9.837    0.000    1.136    0.744

R-Square:
                   Estimate
    IM_composite      0.054
    EEF_composite     0.336
    EEC_composite     0.256

Also partial mediation

Non-connected DVs
lavaan 0.6-19 ended normally after 55 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        36

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               124.251     121.729
  Degrees of freedom                                54          54
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.021
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.941
  Tucker-Lewis Index (TLI)                       0.932       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2366.123   -2366.123
  Scaling correction factor                                  1.849
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4804.246    4804.246
  Bayesian (BIC)                              4925.421    4925.421
  Sample-size adjusted Bayesian (SABIC)       4811.346    4811.346

Root Mean Square Error of Approximation:

  RMSEA                                          0.078       0.077
  90 Percent confidence interval - lower         0.060       0.059
  90 Percent confidence interval - upper         0.096       0.095
  P-value H_0: RMSEA <= 0.050                    0.007       0.009
  P-value H_0: RMSEA >= 0.080                    0.444       0.393
                                                                  
  Robust RMSEA                                               0.077
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.096
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.423

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.023    0.000    1.128    0.933
    EEF3              0.962    0.054   17.770    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.947    0.814
    IM2               1.008    0.159    6.345    0.000    0.954    0.887
    IM3               1.011    0.178    5.669    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.321    0.217    1.477    0.140    0.339    0.122
    reward0_eco2      0.311    0.219    1.421    0.155    0.328    0.123
    reward1_eco2      0.405    0.194    2.086    0.037    0.428    0.160
    reward0_eco3     -0.085    0.261   -0.324    0.746   -0.089   -0.033
    reward1_eco3     -0.231    0.249   -0.927    0.354   -0.243   -0.091
  EEF ~                                                                 
    IM                0.697    0.075    9.275    0.000    0.612    0.612
    reward1_eco1      0.097    0.185    0.522    0.602    0.090    0.032
    reward0_eco2     -0.184    0.203   -0.909    0.363   -0.171   -0.064
    reward1_eco2      0.002    0.195    0.008    0.994    0.001    0.001
    reward0_eco3     -0.234    0.178   -1.312    0.189   -0.217   -0.081
    reward1_eco3     -0.073    0.205   -0.353    0.724   -0.067   -0.025
  EEC ~                                                                 
    IM                0.492    0.075    6.547    0.000    0.478    0.478
    reward1_eco1      0.154    0.205    0.748    0.454    0.158    0.057
    reward0_eco2      0.136    0.221    0.617    0.537    0.140    0.052
    reward1_eco2      0.178    0.214    0.831    0.406    0.182    0.068
    reward0_eco3      0.049    0.184    0.267    0.789    0.050    0.019
    reward1_eco3     -0.002    0.222   -0.007    0.994   -0.002   -0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.352    0.107    3.281    0.001    0.498    0.498

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.602    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.109
   .EEF1              0.246    0.046    5.369    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.097    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.805    0.000    0.240    0.183
   .IM1               0.455    0.164    2.769    0.006    0.455    0.337
   .IM2               0.248    0.067    3.672    0.000    0.248    0.214
   .IM3               0.436    0.212    2.054    0.040    0.436    0.323
   .EEC               0.710    0.115    6.173    0.000    0.749    0.749
   .EEF               0.701    0.165    4.250    0.000    0.603    0.603
   .IM                0.840    0.205    4.107    0.000    0.937    0.937

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.663
    IM2               0.786
    IM3               0.677
    EEC               0.251
    EEF               0.397
    IM                0.063

Only EEF

lavaan 0.6-19 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        18

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                72.150      74.571
  Degrees of freedom                                33          33
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.968
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1079.141     722.264
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.494

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.962       0.939
  Tucker-Lewis Index (TLI)                       0.948       0.916
                                                                  
  Robust Comparative Fit Index (CFI)                         0.960
  Robust Tucker-Lewis Index (TLI)                            0.946

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1504.987   -1504.987
  Scaling correction factor                                  2.595
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1468.911   -1468.911
  Scaling correction factor                                  1.542
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3045.973    3045.973
  Bayesian (BIC)                              3106.561    3106.561
  Sample-size adjusted Bayesian (SABIC)       3049.523    3049.523

Root Mean Square Error of Approximation:

  RMSEA                                          0.074       0.077
  90 Percent confidence interval - lower         0.051       0.053
  90 Percent confidence interval - upper         0.098       0.100
  P-value H_0: RMSEA <= 0.050                    0.044       0.032
  P-value H_0: RMSEA >= 0.080                    0.369       0.432
                                                                  
  Robust RMSEA                                               0.075
  90 Percent confidence interval - lower                     0.053
  90 Percent confidence interval - upper                     0.098
  P-value H_0: Robust RMSEA <= 0.050                         0.034
  P-value H_0: Robust RMSEA >= 0.080                         0.393

Standardized Root Mean Square Residual:

  SRMR                                           0.045       0.045

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.188    0.000    1.128    0.933
    EEF3              0.961    0.055   17.472    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.939    0.808
    IM2               1.024    0.153    6.682    0.000    0.961    0.893
    IM3               1.019    0.172    5.935    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.330    0.214    1.544    0.122    0.352    0.127
    reward0_eco2      0.290    0.217    1.334    0.182    0.309    0.115
    reward1_eco2      0.404    0.191    2.115    0.034    0.430    0.161
    reward0_eco3     -0.105    0.256   -0.410    0.682   -0.112   -0.042
    reward1_eco3     -0.235    0.245   -0.957    0.339   -0.250   -0.093
  EEF ~                                                                 
    IM                0.709    0.075    9.417    0.000    0.617    0.617

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.245    0.046    5.289    0.000    0.245    0.174
   .EEF2              0.188    0.047    4.009    0.000    0.188    0.129
   .EEF3              0.240    0.065    3.680    0.000    0.240    0.183
   .IM1               0.470    0.157    2.989    0.003    0.470    0.348
   .IM2               0.234    0.060    3.912    0.000    0.234    0.202
   .IM3               0.437    0.208    2.098    0.036    0.437    0.323
   .EEF               0.719    0.163    4.411    0.000    0.619    0.619
   .IM                0.824    0.195    4.218    0.000    0.935    0.935

R-Square:
                   Estimate
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.652
    IM2               0.798
    IM3               0.677
    EEF               0.381
    IM                0.065

Only EEC

lavaan 0.6-19 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        18

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                73.346      74.807
  Degrees of freedom                                33          33
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.980
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               873.803     616.512
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.417

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.951       0.927
  Tucker-Lewis Index (TLI)                       0.934       0.900
                                                                  
  Robust Comparative Fit Index (CFI)                         0.949
  Robust Tucker-Lewis Index (TLI)                            0.931

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1704.410   -1704.410
  Scaling correction factor                                  2.233
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1667.737   -1667.737
  Scaling correction factor                                  1.423
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3444.820    3444.820
  Bayesian (BIC)                              3505.408    3505.408
  Sample-size adjusted Bayesian (SABIC)       3448.370    3448.370

Root Mean Square Error of Approximation:

  RMSEA                                          0.076       0.077
  90 Percent confidence interval - lower         0.052       0.054
  90 Percent confidence interval - upper         0.099       0.100
  P-value H_0: RMSEA <= 0.050                    0.037       0.031
  P-value H_0: RMSEA >= 0.080                    0.399       0.438
                                                                  
  Robust RMSEA                                               0.076
  90 Percent confidence interval - lower                     0.053
  90 Percent confidence interval - upper                     0.099
  P-value H_0: Robust RMSEA <= 0.050                         0.032
  P-value H_0: Robust RMSEA >= 0.080                         0.414

Standardized Root Mean Square Residual:

  SRMR                                           0.050       0.050

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.967    0.735
    EEC2              1.292    0.109   11.807    0.000    1.249    0.871
    EEC3              1.346    0.096   14.085    0.000    1.301    0.953
  IM =~                                                                 
    IM1               1.000                               0.918    0.790
    IM2               1.056    0.149    7.069    0.000    0.969    0.900
    IM3               1.056    0.165    6.409    0.000    0.969    0.833

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.330    0.208    1.584    0.113    0.359    0.130
    reward0_eco2      0.310    0.212    1.465    0.143    0.338    0.126
    reward1_eco2      0.413    0.187    2.210    0.027    0.450    0.168
    reward0_eco3     -0.076    0.247   -0.308    0.758   -0.083   -0.031
    reward1_eco3     -0.220    0.240   -0.920    0.358   -0.240   -0.090
  EEC ~                                                                 
    IM                0.503    0.079    6.364    0.000    0.477    0.477

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.793    0.092    8.626    0.000    0.793    0.459
   .EEC2              0.498    0.114    4.379    0.000    0.498    0.242
   .EEC3              0.172    0.068    2.516    0.012    0.172    0.092
   .IM1               0.509    0.154    3.300    0.001    0.509    0.377
   .IM2               0.219    0.050    4.376    0.000    0.219    0.189
   .IM3               0.413    0.190    2.173    0.030    0.413    0.306
   .EEC               0.722    0.113    6.407    0.000    0.772    0.772
   .IM                0.787    0.188    4.193    0.000    0.934    0.934

R-Square:
                   Estimate
    EEC1              0.541
    EEC2              0.758
    EEC3              0.908
    IM1               0.623
    IM2               0.811
    IM3               0.694
    EEC               0.228
    IM                0.066

Partial mediation EEF->>EEC

Partial mediation EEF --> EEC
lavaan 0.6-19 ended normally after 52 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        36

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               124.251     121.729
  Degrees of freedom                                54          54
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.021
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.941
  Tucker-Lewis Index (TLI)                       0.932       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2366.123   -2366.123
  Scaling correction factor                                  1.849
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4804.246    4804.246
  Bayesian (BIC)                              4925.421    4925.421
  Sample-size adjusted Bayesian (SABIC)       4811.346    4811.346

Root Mean Square Error of Approximation:

  RMSEA                                          0.078       0.077
  90 Percent confidence interval - lower         0.060       0.059
  90 Percent confidence interval - upper         0.096       0.095
  P-value H_0: RMSEA <= 0.050                    0.007       0.009
  P-value H_0: RMSEA >= 0.080                    0.444       0.393
                                                                  
  Robust RMSEA                                               0.077
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.096
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.423

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.023    0.000    1.128    0.933
    EEF3              0.962    0.054   17.770    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.947    0.814
    IM2               1.008    0.159    6.345    0.000    0.954    0.887
    IM3               1.011    0.178    5.669    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.321    0.217    1.477    0.140    0.339    0.122
    reward0_eco2      0.311    0.219    1.421    0.155    0.328    0.123
    reward1_eco2      0.405    0.194    2.086    0.037    0.428    0.160
    reward0_eco3     -0.085    0.261   -0.324    0.746   -0.089   -0.033
    reward1_eco3     -0.231    0.249   -0.927    0.354   -0.243   -0.091
  EEF ~                                                                 
    IM                0.697    0.075    9.275    0.000    0.612    0.612
    reward1_eco1      0.097    0.185    0.522    0.602    0.090    0.032
    reward0_eco2     -0.184    0.203   -0.909    0.363   -0.171   -0.064
    reward1_eco2      0.002    0.195    0.008    0.994    0.001    0.001
    reward0_eco3     -0.234    0.178   -1.312    0.189   -0.217   -0.081
    reward1_eco3     -0.073    0.205   -0.353    0.724   -0.067   -0.025
  EEC ~                                                                 
    IM                0.142    0.093    1.531    0.126    0.138    0.138
    reward1_eco1      0.105    0.204    0.515    0.607    0.108    0.039
    reward0_eco2      0.229    0.198    1.153    0.249    0.235    0.088
    reward1_eco2      0.177    0.194    0.912    0.362    0.181    0.068
    reward0_eco3      0.167    0.178    0.937    0.349    0.171    0.064
    reward1_eco3      0.035    0.202    0.172    0.864    0.036    0.013
    EEF               0.502    0.078    6.433    0.000    0.555    0.555

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.602    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.109
   .EEF1              0.246    0.046    5.369    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.097    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.805    0.000    0.240    0.183
   .IM1               0.455    0.164    2.769    0.006    0.455    0.337
   .IM2               0.248    0.067    3.672    0.000    0.248    0.214
   .IM3               0.436    0.212    2.054    0.040    0.436    0.323
   .EEC               0.534    0.084    6.378    0.000    0.563    0.563
   .EEF               0.701    0.165    4.250    0.000    0.603    0.603
   .IM                0.840    0.205    4.107    0.000    0.937    0.937

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.663
    IM2               0.786
    IM3               0.677
    EEC               0.437
    EEF               0.397
    IM                0.063

Partial EEC->>EEF

Partial mediation EEC --> EEF
lavaan 0.6-19 ended normally after 51 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        36

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               124.251     121.729
  Degrees of freedom                                54          54
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.021
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.941
  Tucker-Lewis Index (TLI)                       0.932       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2366.123   -2366.123
  Scaling correction factor                                  1.849
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4804.246    4804.246
  Bayesian (BIC)                              4925.421    4925.421
  Sample-size adjusted Bayesian (SABIC)       4811.346    4811.346

Root Mean Square Error of Approximation:

  RMSEA                                          0.078       0.077
  90 Percent confidence interval - lower         0.060       0.059
  90 Percent confidence interval - upper         0.096       0.095
  P-value H_0: RMSEA <= 0.050                    0.007       0.009
  P-value H_0: RMSEA >= 0.080                    0.444       0.393
                                                                  
  Robust RMSEA                                               0.077
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.096
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.423

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.023    0.000    1.128    0.933
    EEF3              0.962    0.054   17.770    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.947    0.814
    IM2               1.008    0.159    6.345    0.000    0.954    0.887
    IM3               1.011    0.178    5.669    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.321    0.217    1.477    0.140    0.339    0.122
    reward0_eco2      0.311    0.219    1.421    0.155    0.328    0.123
    reward1_eco2      0.405    0.194    2.086    0.037    0.428    0.160
    reward0_eco3     -0.085    0.261   -0.324    0.746   -0.089   -0.033
    reward1_eco3     -0.231    0.249   -0.927    0.354   -0.243   -0.091
  EEF ~                                                                 
    IM                0.453    0.084    5.416    0.000    0.398    0.398
    reward1_eco1      0.020    0.191    0.107    0.915    0.019    0.007
    reward0_eco2     -0.252    0.184   -1.365    0.172   -0.233   -0.087
    reward1_eco2     -0.086    0.182   -0.475    0.634   -0.080   -0.030
    reward0_eco3     -0.258    0.171   -1.511    0.131   -0.240   -0.090
    reward1_eco3     -0.072    0.188   -0.382    0.703   -0.067   -0.025
    EEC               0.495    0.119    4.165    0.000    0.447    0.447
  EEC ~                                                                 
    IM                0.492    0.075    6.547    0.000    0.478    0.478
    reward1_eco1      0.154    0.205    0.748    0.454    0.158    0.057
    reward0_eco2      0.136    0.221    0.617    0.537    0.140    0.052
    reward1_eco2      0.177    0.214    0.831    0.406    0.182    0.068
    reward0_eco3      0.049    0.184    0.267    0.789    0.050    0.019
    reward1_eco3     -0.002    0.222   -0.007    0.994   -0.002   -0.001

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.602    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.109
   .EEF1              0.246    0.046    5.369    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.097    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.805    0.000    0.240    0.183
   .IM1               0.455    0.164    2.769    0.006    0.455    0.337
   .IM2               0.248    0.067    3.672    0.000    0.248    0.214
   .IM3               0.436    0.212    2.054    0.040    0.436    0.323
   .EEC               0.710    0.115    6.173    0.000    0.749    0.749
   .EEF               0.527    0.094    5.626    0.000    0.453    0.453
   .IM                0.840    0.205    4.107    0.000    0.937    0.937

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.663
    IM2               0.786
    IM3               0.677
    EEC               0.251
    EEF               0.547
    IM                0.063

IM

IM as DV and only manipulations as IVs
lavaan 0.6-19 ended normally after 28 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 5.678       6.197
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.842       0.798
  Scaling correction factor                                  0.916
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               364.355     194.854
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.870

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.022       1.039
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.019

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -811.818    -811.818
  Scaling correction factor                                  2.800
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -808.979    -808.979
  Scaling correction factor                                  1.903
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1645.637    1645.637
  Bayesian (BIC)                              1682.663    1682.663
  Sample-size adjusted Bayesian (SABIC)       1647.806    1647.806

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.043       0.051
  P-value H_0: RMSEA <= 0.050                    0.968       0.947
  P-value H_0: RMSEA >= 0.080                    0.002       0.005
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.046
  P-value H_0: Robust RMSEA <= 0.050                         0.961
  P-value H_0: Robust RMSEA >= 0.080                         0.002

Standardized Root Mean Square Residual:

  SRMR                                           0.015       0.015

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM =~                                                                 
    IM1               1.000                               0.889    0.765
    IM2               1.125    0.158    7.111    0.000    1.000    0.930
    IM3               1.075    0.161    6.681    0.000    0.956    0.822

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.320    0.203    1.575    0.115    0.361    0.130
    reward0_eco2      0.279    0.207    1.349    0.177    0.313    0.117
    reward1_eco2      0.388    0.184    2.104    0.035    0.437    0.163
    reward0_eco3     -0.077    0.235   -0.327    0.744   -0.087   -0.032
    reward1_eco3     -0.211    0.234   -0.901    0.368   -0.237   -0.089

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM1               0.561    0.153    3.676    0.000    0.561    0.415
   .IM2               0.157    0.049    3.213    0.001    0.157    0.136
   .IM3               0.438    0.203    2.162    0.031    0.438    0.324
   .IM                0.740    0.179    4.127    0.000    0.937    0.937

R-Square:
                   Estimate
    IM1               0.585
    IM2               0.864
    IM3               0.676
    IM                0.063
IM without independent variables
lavaan 0.6-19 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                97.943      92.692
  Degrees of freedom                                24          24
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.057
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1591.464     907.183
  Degrees of freedom                                36          36
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.754

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.952       0.921
  Tucker-Lewis Index (TLI)                       0.929       0.882
                                                                  
  Robust Comparative Fit Index (CFI)                         0.953
  Robust Tucker-Lewis Index (TLI)                            0.929

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2375.203   -2375.203
  Scaling correction factor                                  2.460
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2326.231   -2326.231
  Scaling correction factor                                  1.712
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4792.406    4792.406
  Bayesian (BIC)                              4863.092    4863.092
  Sample-size adjusted Bayesian (SABIC)       4796.548    4796.548

Root Mean Square Error of Approximation:

  RMSEA                                          0.120       0.116
  90 Percent confidence interval - lower         0.096       0.092
  90 Percent confidence interval - upper         0.145       0.140
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.996       0.992
                                                                  
  Robust RMSEA                                               0.119
  90 Percent confidence interval - lower                     0.094
  90 Percent confidence interval - upper                     0.145
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.994

Standardized Root Mean Square Residual:

  SRMR                                           0.069       0.069

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.973    0.740
    EEC2              1.289    0.108   11.885    0.000    1.254    0.874
    EEC3              1.330    0.093   14.310    0.000    1.293    0.947
  EEF =~                                                                
    EEF1              1.000                               1.077    0.908
    EEF2              1.047    0.052   20.022    0.000    1.128    0.933
    EEF3              0.963    0.054   17.668    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.952    0.819
    IM2               1.000    0.161    6.229    0.000    0.952    0.885
    IM3               1.002    0.180    5.560    0.000    0.953    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.706    0.074    9.485    0.000    0.624    0.624
  EEC ~                                                                 
    IM                0.507    0.076    6.680    0.000    0.496    0.496

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.350    0.107    3.264    0.001    0.492    0.492

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.782    0.093    8.402    0.000    0.782    0.453
   .EEC2              0.486    0.104    4.666    0.000    0.486    0.236
   .EEC3              0.193    0.061    3.147    0.002    0.193    0.103
   .EEF1              0.247    0.046    5.416    0.000    0.247    0.175
   .EEF2              0.188    0.046    4.102    0.000    0.188    0.129
   .EEF3              0.239    0.064    3.765    0.000    0.239    0.182
   .IM1               0.446    0.165    2.698    0.007    0.446    0.330
   .IM2               0.251    0.073    3.428    0.001    0.251    0.217
   .IM3               0.444    0.218    2.035    0.042    0.444    0.328
   .EEC               0.714    0.116    6.168    0.000    0.754    0.754
   .EEF               0.709    0.164    4.318    0.000    0.611    0.611
    IM                0.906    0.210    4.312    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.547
    EEC2              0.764
    EEC3              0.897
    EEF1              0.825
    EEF2              0.871
    EEF3              0.818
    IM1               0.670
    IM2               0.783
    IM3               0.672
    EEC               0.246
    EEF               0.389

ADT and full mediation by IM

lavaan 0.6-19 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        29

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               140.722     124.087
  Degrees of freedom                                49          49
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.134
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              2129.667    1338.116
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.592

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.956       0.941
  Tucker-Lewis Index (TLI)                       0.940       0.920
                                                                  
  Robust Comparative Fit Index (CFI)                         0.958
  Robust Tucker-Lewis Index (TLI)                            0.943

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3097.704   -3097.704
  Scaling correction factor                                  2.323
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -3027.343   -3027.343
  Scaling correction factor                                  1.576
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6253.408    6253.408
  Bayesian (BIC)                              6351.021    6351.021
  Sample-size adjusted Bayesian (SABIC)       6259.127    6259.127

Root Mean Square Error of Approximation:

  RMSEA                                          0.094       0.085
  90 Percent confidence interval - lower         0.076       0.067
  90 Percent confidence interval - upper         0.112       0.102
  P-value H_0: RMSEA <= 0.050                    0.000       0.001
  P-value H_0: RMSEA >= 0.080                    0.896       0.684
                                                                  
  Robust RMSEA                                               0.090
  90 Percent confidence interval - lower                     0.071
  90 Percent confidence interval - upper                     0.110
  P-value H_0: Robust RMSEA <= 0.050                         0.001
  P-value H_0: Robust RMSEA >= 0.080                         0.811

Standardized Root Mean Square Residual:

  SRMR                                           0.073       0.073

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.288    0.108   11.902    0.000    1.255    0.874
    EEC3              1.325    0.092   14.341    0.000    1.290    0.945
  EEF =~                                                                
    EEF1              1.000                               1.077    0.908
    EEF2              1.047    0.052   19.987    0.000    1.128    0.933
    EEF3              0.962    0.055   17.641    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.958    0.824
    IM2               0.989    0.173    5.718    0.000    0.947    0.881
    IM3               0.990    0.194    5.092    0.000    0.949    0.816
  ADT =~                                                                
    ADT1              1.000                               0.914    0.877
    ADT2              1.043    0.068   15.283    0.000    0.954    0.902
    ADT3              1.152    0.077   14.903    0.000    1.054    0.881

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.458    0.088    5.202    0.000    0.408    0.408
    EEC               0.491    0.124    3.973    0.000    0.444    0.444
  EEC ~                                                                 
    IM                0.422    0.078    5.438    0.000    0.415    0.415
    ADT               0.317    0.089    3.584    0.000    0.298    0.298
  IM ~                                                                  
    ADT               0.302    0.148    2.038    0.042    0.288    0.288

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.779    0.094    8.331    0.000    0.779    0.451
   .EEC2              0.484    0.102    4.765    0.000    0.484    0.235
   .EEC3              0.201    0.062    3.246    0.001    0.201    0.108
   .EEF1              0.246    0.045    5.416    0.000    0.246    0.175
   .EEF2              0.188    0.046    4.102    0.000    0.188    0.129
   .EEF3              0.240    0.064    3.772    0.000    0.240    0.182
   .IM1               0.433    0.178    2.437    0.015    0.433    0.320
   .IM2               0.260    0.085    3.043    0.002    0.260    0.225
   .IM3               0.452    0.231    1.958    0.050    0.452    0.334
   .ADT1              0.252    0.057    4.390    0.000    0.252    0.231
   .ADT2              0.209    0.053    3.949    0.000    0.209    0.187
   .ADT3              0.319    0.089    3.596    0.000    0.319    0.223
   .EEC               0.634    0.099    6.396    0.000    0.668    0.668
   .EEF               0.529    0.093    5.670    0.000    0.456    0.456
   .IM                0.842    0.162    5.186    0.000    0.917    0.917
    ADT               0.836    0.123    6.786    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.765
    EEC3              0.892
    EEF1              0.825
    EEF2              0.871
    EEF3              0.818
    IM1               0.680
    IM2               0.775
    IM3               0.666
    ADT1              0.769
    ADT2              0.813
    ADT3              0.777
    EEC               0.332
    EEF               0.544
    IM                0.083

Moderation

ADT

Continuous ADT
On reward groups
lavaan 0.6-19 ended normally after 46 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        84

  Number of observations per group:                   
    no_reward                                      109
    performance_reward                             105

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               211.222     215.445
  Degrees of freedom                                96          96
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.980
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    no_reward                                   94.458      94.458
    performance_reward                         120.987     120.987

Model Test Baseline Model:

  Test statistic                              2264.264    1602.257
  Degrees of freedom                               132         132
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.413

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.946       0.919
  Tucker-Lewis Index (TLI)                       0.926       0.888
                                                                  
  Robust Comparative Fit Index (CFI)                         0.944
  Robust Tucker-Lewis Index (TLI)                            0.923

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3054.575   -3054.575
  Scaling correction factor                                  1.806
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2948.964   -2948.964
  Scaling correction factor                                  1.366
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6277.149    6277.149
  Bayesian (BIC)                              6559.891    6559.891
  Sample-size adjusted Bayesian (SABIC)       6293.716    6293.716

Root Mean Square Error of Approximation:

  RMSEA                                          0.106       0.108
  90 Percent confidence interval - lower         0.087       0.088
  90 Percent confidence interval - upper         0.125       0.127
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.985       0.990
                                                                  
  Robust RMSEA                                               0.107
  90 Percent confidence interval - lower                     0.088
  90 Percent confidence interval - upper                     0.126
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.989

Standardized Root Mean Square Residual:

  SRMR                                           0.077       0.077

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [no_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.891    0.724
    EEC2              1.469    0.150    9.790    0.000    1.310    0.891
    EEC3              1.362    0.129   10.526    0.000    1.214    0.933
  EEF =~                                                                
    EEF1              1.000                               1.004    0.895
    EEF2              1.043    0.071   14.594    0.000    1.047    0.908
    EEF3              1.018    0.050   20.279    0.000    1.021    0.920
  IM =~                                                                 
    IM1               1.000                               1.136    0.920
    IM2               0.860    0.076   11.389    0.000    0.977    0.938
    IM3               0.842    0.104    8.123    0.000    0.956    0.803
  ADT =~                                                                
    ADT1              1.000                               0.898    0.863
    ADT2              0.973    0.080   12.092    0.000    0.873    0.938
    ADT3              1.137    0.095   11.950    0.000    1.021    0.867

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.534    0.085    6.262    0.000    0.604    0.604
    ADT               0.161    0.090    1.794    0.073    0.144    0.144
  EEC ~                                                                 
    IM                0.365    0.088    4.127    0.000    0.465    0.465
    ADT               0.176    0.106    1.663    0.096    0.177    0.177
  IM ~                                                                  
    ADT               0.295    0.168    1.759    0.079    0.233    0.233

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.254    0.078    3.244    0.001    0.444    0.444

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.165    0.118   35.341    0.000    4.165    3.385
   .EEC2              4.275    0.141   30.351    0.000    4.275    2.907
   .EEC3              4.294    0.125   34.445    0.000    4.294    3.299
   .EEF1              5.193    0.107   48.365    0.000    5.193    4.633
   .EEF2              5.303    0.110   47.999    0.000    5.303    4.597
   .EEF3              5.404    0.106   50.837    0.000    5.404    4.869
   .IM1               5.156    0.118   43.574    0.000    5.156    4.174
   .IM2               5.596    0.100   56.098    0.000    5.596    5.373
   .IM3               5.431    0.114   47.591    0.000    5.431    4.558
   .ADT1              5.394    0.100   54.121    0.000    5.394    5.184
   .ADT2              5.422    0.089   60.768    0.000    5.422    5.820
   .ADT3              5.229    0.113   46.345    0.000    5.229    4.439

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.719    0.128    5.608    0.000    0.719    0.475
   .EEC2              0.447    0.114    3.927    0.000    0.447    0.207
   .EEC3              0.220    0.086    2.565    0.010    0.220    0.130
   .EEF1              0.249    0.070    3.584    0.000    0.249    0.198
   .EEF2              0.235    0.076    3.103    0.002    0.235    0.176
   .EEF3              0.188    0.075    2.498    0.012    0.188    0.153
   .IM1               0.236    0.072    3.293    0.001    0.236    0.154
   .IM2               0.130    0.044    2.971    0.003    0.130    0.120
   .IM3               0.505    0.322    1.567    0.117    0.505    0.356
   .ADT1              0.277    0.083    3.354    0.001    0.277    0.256
   .ADT2              0.105    0.056    1.872    0.061    0.105    0.121
   .ADT3              0.346    0.149    2.326    0.020    0.346    0.249
   .EEC               0.568    0.133    4.284    0.000    0.714    0.714
   .EEF               0.578    0.133    4.335    0.000    0.574    0.574
   .IM                1.221    0.202    6.046    0.000    0.946    0.946
    ADT               0.806    0.129    6.247    0.000    1.000    1.000


Group 2 [performance_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.045    0.751
    EEC2              1.159    0.150    7.730    0.000    1.212    0.868
    EEC3              1.305    0.133    9.835    0.000    1.364    0.956
  EEF =~                                                                
    EEF1              1.000                               1.154    0.928
    EEF2              1.032    0.076   13.578    0.000    1.191    0.954
    EEF3              0.906    0.094    9.606    0.000    1.046    0.888
  IM =~                                                                 
    IM1               1.000                               0.734    0.678
    IM2               1.293    0.503    2.569    0.010    0.949    0.858
    IM3               1.304    0.549    2.377    0.017    0.957    0.846
  ADT =~                                                                
    ADT1              1.000                               0.940    0.899
    ADT2              1.097    0.110    9.974    0.000    1.031    0.884
    ADT3              1.151    0.113   10.219    0.000    1.082    0.892

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.708    0.126    5.600    0.000    0.450    0.450
    ADT               0.498    0.163    3.051    0.002    0.405    0.405
  EEC ~                                                                 
    IM                0.496    0.133    3.714    0.000    0.348    0.348
    ADT               0.479    0.116    4.133    0.000    0.431    0.431
  IM ~                                                                  
    ADT               0.199    0.208    0.955    0.340    0.254    0.254

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.272    0.146    1.862    0.063    0.390    0.390

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.333    0.136   31.909    0.000    4.333    3.114
   .EEC2              4.314    0.136   31.668    0.000    4.314    3.090
   .EEC3              4.429    0.139   31.808    0.000    4.429    3.104
   .EEF1              5.371    0.121   44.242    0.000    5.371    4.318
   .EEF2              5.562    0.122   45.624    0.000    5.562    4.452
   .EEF3              5.562    0.115   48.357    0.000    5.562    4.719
   .IM1               5.143    0.106   48.718    0.000    5.143    4.754
   .IM2               5.733    0.108   53.099    0.000    5.733    5.182
   .IM3               5.524    0.110   50.069    0.000    5.524    4.886
   .ADT1              5.381    0.102   52.741    0.000    5.381    5.147
   .ADT2              5.238    0.114   45.986    0.000    5.238    4.488
   .ADT3              5.267    0.118   44.485    0.000    5.267    4.341

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.844    0.138    6.109    0.000    0.844    0.436
   .EEC2              0.481    0.153    3.142    0.002    0.481    0.247
   .EEC3              0.174    0.088    1.970    0.049    0.174    0.086
   .EEF1              0.216    0.055    3.898    0.000    0.216    0.139
   .EEF2              0.141    0.050    2.832    0.005    0.141    0.090
   .EEF3              0.295    0.100    2.946    0.003    0.295    0.212
   .IM1               0.632    0.301    2.097    0.036    0.632    0.540
   .IM2               0.324    0.115    2.811    0.005    0.324    0.265
   .IM3               0.363    0.259    1.399    0.162    0.363    0.284
   .ADT1              0.210    0.079    2.655    0.008    0.210    0.192
   .ADT2              0.299    0.081    3.690    0.000    0.299    0.219
   .ADT3              0.301    0.082    3.669    0.000    0.301    0.205
   .EEC               0.674    0.134    5.026    0.000    0.617    0.617
   .EEF               0.721    0.244    2.958    0.003    0.541    0.541
   .IM                0.503    0.238    2.115    0.034    0.935    0.935
    ADT               0.883    0.211    4.180    0.000    1.000    1.000
On eco groups
lavaan 0.6-19 ended normally after 47 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       126

  Number of observations per group:                   
    EEF_ori                                         70
    both_ori                                        72
    EEC_ori                                         72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               260.132     268.098
  Degrees of freedom                               144         144
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.970
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF_ori                                     71.903      71.903
    both_ori                                    99.550      99.550
    EEC_ori                                     96.644      96.644

Model Test Baseline Model:

  Test statistic                              2331.901    1848.415
  Degrees of freedom                               198         198
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.262

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.946       0.925
  Tucker-Lewis Index (TLI)                       0.925       0.897
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.920

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2998.573   -2998.573
  Scaling correction factor                                  1.563
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2868.507   -2868.507
  Scaling correction factor                                  1.247
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6249.147    6249.147
  Bayesian (BIC)                              6673.260    6673.260
  Sample-size adjusted Bayesian (SABIC)       6273.997    6273.997

Root Mean Square Error of Approximation:

  RMSEA                                          0.106       0.110
  90 Percent confidence interval - lower         0.085       0.089
  90 Percent confidence interval - upper         0.127       0.131
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.979       0.989
                                                                  
  Robust RMSEA                                               0.108
  90 Percent confidence interval - lower                     0.088
  90 Percent confidence interval - upper                     0.128
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.988

Standardized Root Mean Square Residual:

  SRMR                                           0.078       0.078

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF_ori]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.864    0.681
    EEC2              1.290    0.195    6.622    0.000    1.114    0.838
    EEC3              1.319    0.170    7.751    0.000    1.139    0.906
  EEF =~                                                                
    EEF1              1.000                               0.888    0.855
    EEF2              1.129    0.160    7.061    0.000    1.003    0.887
    EEF3              0.903    0.128    7.079    0.000    0.802    0.809
  IM =~                                                                 
    IM1               1.000                               0.961    0.881
    IM2               0.978    0.142    6.901    0.000    0.940    0.915
    IM3               0.693    0.260    2.664    0.008    0.665    0.570
  ADT =~                                                                
    ADT1              1.000                               0.823    0.793
    ADT2              1.220    0.169    7.233    0.000    1.003    0.914
    ADT3              1.280    0.182    7.017    0.000    1.053    0.905

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.549    0.148    3.705    0.000    0.594    0.594
    EEC               0.179    0.159    1.124    0.261    0.174    0.174
    ADT               0.103    0.142    0.721    0.471    0.095    0.095
  EEC ~                                                                 
    IM                0.263    0.146    1.803    0.071    0.292    0.292
    ADT               0.211    0.155    1.367    0.172    0.201    0.201
  IM ~                                                                  
    ADT               0.613    0.262    2.339    0.019    0.525    0.525

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.143    0.152   27.333    0.000    4.143    3.267
   .EEC2              4.271    0.159   26.868    0.000    4.271    3.211
   .EEC3              4.400    0.150   29.260    0.000    4.400    3.497
   .EEF1              5.471    0.124   44.095    0.000    5.471    5.270
   .EEF2              5.543    0.135   41.042    0.000    5.543    4.906
   .EEF3              5.600    0.118   47.260    0.000    5.600    5.649
   .IM1               5.200    0.130   39.906    0.000    5.200    4.770
   .IM2               5.729    0.123   46.665    0.000    5.729    5.578
   .IM3               5.443    0.139   39.034    0.000    5.443    4.665
   .ADT1              5.457    0.124   44.001    0.000    5.457    5.259
   .ADT2              5.371    0.131   40.941    0.000    5.371    4.893
   .ADT3              5.300    0.139   38.124    0.000    5.300    4.557

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.862    0.170    5.062    0.000    0.862    0.536
   .EEC2              0.527    0.201    2.618    0.009    0.527    0.298
   .EEC3              0.285    0.145    1.968    0.049    0.285    0.180
   .EEF1              0.289    0.105    2.748    0.006    0.289    0.268
   .EEF2              0.271    0.111    2.448    0.014    0.271    0.212
   .EEF3              0.339    0.119    2.850    0.004    0.339    0.345
   .IM1               0.266    0.112    2.372    0.018    0.266    0.223
   .IM2               0.171    0.098    1.757    0.079    0.171    0.163
   .IM3               0.918    0.518    1.774    0.076    0.918    0.675
   .ADT1              0.400    0.123    3.243    0.001    0.400    0.371
   .ADT2              0.198    0.100    1.972    0.049    0.198    0.164
   .ADT3              0.245    0.092    2.648    0.008    0.245    0.181
   .EEC               0.607    0.165    3.680    0.000    0.812    0.812
   .EEF               0.358    0.152    2.348    0.019    0.454    0.454
   .IM                0.669    0.167    3.995    0.000    0.724    0.724
    ADT               0.677    0.137    4.924    0.000    1.000    1.000


Group 2 [both_ori]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.035    0.759
    EEC2              1.135    0.186    6.119    0.000    1.175    0.868
    EEC3              1.240    0.156    7.946    0.000    1.283    0.944
  EEF =~                                                                
    EEF1              1.000                               1.140    0.940
    EEF2              1.067    0.055   19.496    0.000    1.217    0.967
    EEF3              0.991    0.099    9.968    0.000    1.130    0.938
  IM =~                                                                 
    IM1               1.000                               0.988    0.767
    IM2               1.162    0.304    3.822    0.000    1.148    0.901
    IM3               1.322    0.330    4.010    0.000    1.306    0.948
  ADT =~                                                                
    ADT1              1.000                               0.985    0.956
    ADT2              0.894    0.069   13.004    0.000    0.881    0.907
    ADT3              0.984    0.085   11.591    0.000    0.970    0.831

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.356    0.114    3.111    0.002    0.308    0.308
    EEC               0.448    0.173    2.583    0.010    0.406    0.406
    ADT               0.282    0.137    2.058    0.040    0.244    0.244
  EEC ~                                                                 
    IM                0.389    0.116    3.358    0.001    0.371    0.371
    ADT               0.486    0.121    4.009    0.000    0.463    0.463
  IM ~                                                                  
    ADT               0.248    0.222    1.118    0.263    0.247    0.247

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.028    0.161   25.057    0.000    4.028    2.953
   .EEC2              4.028    0.160   25.247    0.000    4.028    2.975
   .EEC3              4.111    0.160   25.656    0.000    4.111    3.024
   .EEF1              5.000    0.143   34.966    0.000    5.000    4.121
   .EEF2              5.167    0.148   34.841    0.000    5.167    4.106
   .EEF3              5.181    0.142   36.461    0.000    5.181    4.297
   .IM1               4.917    0.152   32.383    0.000    4.917    3.816
   .IM2               5.375    0.150   35.797    0.000    5.375    4.219
   .IM3               5.181    0.162   31.908    0.000    5.181    3.760
   .ADT1              5.278    0.121   43.462    0.000    5.278    5.122
   .ADT2              5.264    0.115   45.965    0.000    5.264    5.417
   .ADT3              5.167    0.137   37.578    0.000    5.167    4.429

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.790    0.164    4.805    0.000    0.790    0.425
   .EEC2              0.453    0.186    2.434    0.015    0.453    0.247
   .EEC3              0.202    0.102    1.991    0.046    0.202    0.109
   .EEF1              0.172    0.052    3.299    0.001    0.172    0.117
   .EEF2              0.103    0.047    2.180    0.029    0.103    0.065
   .EEF3              0.176    0.076    2.302    0.021    0.176    0.121
   .IM1               0.684    0.337    2.028    0.043    0.684    0.412
   .IM2               0.306    0.084    3.635    0.000    0.306    0.189
   .IM3               0.192    0.102    1.874    0.061    0.192    0.101
   .ADT1              0.091    0.052    1.746    0.081    0.091    0.085
   .ADT2              0.168    0.069    2.426    0.015    0.168    0.178
   .ADT3              0.421    0.212    1.985    0.047    0.421    0.309
   .EEC               0.602    0.138    4.366    0.000    0.562    0.562
   .EEF               0.536    0.119    4.485    0.000    0.412    0.412
   .IM                0.916    0.305    3.003    0.003    0.939    0.939
    ADT               0.971    0.269    3.608    0.000    1.000    1.000


Group 3 [EEC_ori]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.953    0.765
    EEC2              1.459    0.209    6.965    0.000    1.390    0.896
    EEC3              1.474    0.182    8.109    0.000    1.405    0.981
  EEF =~                                                                
    EEF1              1.000                               1.130    0.911
    EEF2              0.983    0.094   10.403    0.000    1.111    0.936
    EEF3              0.953    0.069   13.751    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.832    0.789
    IM2               0.823    0.113    7.296    0.000    0.684    0.846
    IM3               0.844    0.146    5.781    0.000    0.702    0.906
  ADT =~                                                                
    ADT1              1.000                               0.923    0.878
    ADT2              1.062    0.116    9.165    0.000    0.980    0.894
    ADT3              1.231    0.120   10.222    0.000    1.137    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.432    0.160    2.708    0.007    0.318    0.318
    EEC               0.637    0.216    2.952    0.003    0.537    0.537
    ADT               0.046    0.116    0.398    0.690    0.038    0.038
  EEC ~                                                                 
    IM                0.549    0.133    4.125    0.000    0.479    0.479
    ADT               0.345    0.112    3.077    0.002    0.334    0.334
  IM ~                                                                  
    ADT              -0.013    0.126   -0.106    0.916   -0.015   -0.015

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.569    0.147   31.136    0.000    4.569    3.669
   .EEC2              4.583    0.183   25.053    0.000    4.583    2.953
   .EEC3              4.569    0.169   27.075    0.000    4.569    3.191
   .EEF1              5.375    0.146   36.753    0.000    5.375    4.331
   .EEF2              5.583    0.140   39.902    0.000    5.583    4.702
   .EEF3              5.667    0.137   41.214    0.000    5.667    4.857
   .IM1               5.333    0.124   42.933    0.000    5.333    5.060
   .IM2               5.889    0.095   61.774    0.000    5.889    7.280
   .IM3               5.806    0.091   63.540    0.000    5.806    7.488
   .ADT1              5.431    0.124   43.810    0.000    5.431    5.163
   .ADT2              5.361    0.129   41.476    0.000    5.361    4.888
   .ADT3              5.278    0.147   35.836    0.000    5.278    4.223

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.642    0.133    4.838    0.000    0.642    0.414
   .EEC2              0.476    0.124    3.829    0.000    0.476    0.198
   .EEC3              0.076    0.071    1.073    0.283    0.076    0.037
   .EEF1              0.263    0.063    4.190    0.000    0.263    0.171
   .EEF2              0.176    0.062    2.823    0.005    0.176    0.125
   .EEF3              0.201    0.120    1.681    0.093    0.201    0.148
   .IM1               0.419    0.214    1.960    0.050    0.419    0.377
   .IM2               0.186    0.065    2.862    0.004    0.186    0.285
   .IM3               0.108    0.056    1.940    0.052    0.108    0.179
   .ADT1              0.253    0.090    2.828    0.005    0.253    0.229
   .ADT2              0.242    0.094    2.578    0.010    0.242    0.201
   .ADT3              0.269    0.103    2.608    0.009    0.269    0.172
   .EEC               0.603    0.182    3.322    0.001    0.664    0.664
   .EEF               0.554    0.153    3.612    0.000    0.434    0.434
   .IM                0.692    0.193    3.593    0.000    1.000    1.000
    ADT               0.853    0.178    4.791    0.000    1.000    1.000
GG plot
`geom_smooth()` using formula = 'y ~ x'

`geom_smooth()` using formula = 'y ~ x'

ADT as categorical variable
SEM

Grouped by reward

Note: High ADT is coded as above 5
lavaan 0.6-19 ended normally after 85 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    no_reward                                      109
    performance_reward                             105

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               141.219     154.387
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.915
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    no_reward                                   66.456      66.456
    performance_reward                          87.931      87.931

Model Test Baseline Model:

  Test statistic                              1709.294    1191.994
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.434

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.950       0.914
  Tucker-Lewis Index (TLI)                       0.925       0.872
                                                                  
  Robust Comparative Fit Index (CFI)                         0.945
  Robust Tucker-Lewis Index (TLI)                            0.918

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2330.439   -2330.439
  Scaling correction factor                                  1.818
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2259.830   -2259.830
  Scaling correction factor                                  1.388
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4792.878    4792.878
  Bayesian (BIC)                              5015.033    5015.033
  Sample-size adjusted Bayesian (SABIC)       4805.895    4805.895

Root Mean Square Error of Approximation:

  RMSEA                                          0.112       0.121
  90 Percent confidence interval - lower         0.089       0.097
  90 Percent confidence interval - upper         0.137       0.146
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.986       0.996
                                                                  
  Robust RMSEA                                               0.116
  90 Percent confidence interval - lower                     0.094
  90 Percent confidence interval - upper                     0.139
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.995

Standardized Root Mean Square Residual:

  SRMR                                           0.072       0.072

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [no_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.891    0.724
    EEC2              1.471    0.150    9.787    0.000    1.311    0.891
    EEC3              1.362    0.129   10.541    0.000    1.214    0.933
  EEF =~                                                                
    EEF1              1.000                               1.003    0.895
    EEF2              1.044    0.071   14.641    0.000    1.047    0.908
    EEF3              1.018    0.050   20.224    0.000    1.021    0.920
  IM =~                                                                 
    IM1               1.000                               1.136    0.920
    IM2               0.860    0.076   11.286    0.000    0.977    0.938
    IM3               0.842    0.104    8.079    0.000    0.956    0.802

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.352    0.081    4.356    0.000    0.398    0.398
    EEC               0.430    0.119    3.603    0.000    0.382    0.382
    ADT_high          0.311    0.153    2.041    0.041    0.310    0.155
  EEC ~                                                                 
    IM                0.356    0.088    4.071    0.000    0.455    0.455
    ADT_high          0.307    0.174    1.758    0.079    0.344    0.172
  IM ~                                                                  
    ADT_high          0.680    0.231    2.949    0.003    0.599    0.299

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.334    0.283   11.780    0.000    3.334    2.710
   .EEC2              3.053    0.402    7.590    0.000    3.053    2.076
   .EEC3              3.161    0.368    8.588    0.000    3.161    2.429
   .EEF1              4.002    0.314   12.751    0.000    4.002    3.570
   .EEF2              4.060    0.317   12.816    0.000    4.060    3.520
   .EEF3              4.191    0.313   13.402    0.000    4.191    3.777
   .IM1               4.126    0.395   10.447    0.000    4.126    3.340
   .IM2               4.711    0.337   13.963    0.000    4.711    4.523
   .IM3               4.565    0.359   12.714    0.000    4.565    3.831

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.720    0.129    5.596    0.000    0.720    0.476
   .EEC2              0.445    0.112    3.978    0.000    0.445    0.206
   .EEC3              0.221    0.087    2.546    0.011    0.221    0.130
   .EEF1              0.250    0.070    3.586    0.000    0.250    0.199
   .EEF2              0.234    0.075    3.105    0.002    0.234    0.176
   .EEF3              0.189    0.076    2.488    0.013    0.189    0.153
   .IM1               0.236    0.072    3.282    0.001    0.236    0.154
   .IM2               0.130    0.044    2.965    0.003    0.130    0.120
   .IM3               0.505    0.323    1.565    0.118    0.505    0.356
   .EEC               0.569    0.134    4.233    0.000    0.717    0.717
   .EEF               0.447    0.108    4.153    0.000    0.444    0.444
   .IM                1.175    0.202    5.806    0.000    0.910    0.910


Group 2 [performance_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.045    0.751
    EEC2              1.162    0.150    7.733    0.000    1.215    0.870
    EEC3              1.302    0.132    9.840    0.000    1.361    0.954
  EEF =~                                                                
    EEF1              1.000                               1.153    0.926
    EEF2              1.034    0.075   13.701    0.000    1.192    0.954
    EEF3              0.909    0.093    9.780    0.000    1.047    0.889
  IM =~                                                                 
    IM1               1.000                               0.737    0.681
    IM2               1.289    0.503    2.561    0.010    0.949    0.858
    IM3               1.295    0.536    2.415    0.016    0.954    0.844

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.518    0.165    3.137    0.002    0.331    0.331
    EEC               0.520    0.211    2.465    0.014    0.472    0.472
    ADT_high          0.111    0.188    0.592    0.554    0.096    0.048
  EEC ~                                                                 
    IM                0.589    0.133    4.416    0.000    0.415    0.415
    ADT_high          0.720    0.197    3.657    0.000    0.689    0.344
  IM ~                                                                  
    ADT_high          0.192    0.230    0.837    0.402    0.261    0.130

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.071    0.329    9.337    0.000    3.071    2.207
   .EEC2              2.848    0.406    7.009    0.000    2.848    2.040
   .EEC3              2.786    0.412    6.763    0.000    2.786    1.953
   .EEF1              4.396    0.417   10.540    0.000    4.396    3.533
   .EEF2              4.553    0.404   11.259    0.000    4.553    3.645
   .EEF3              4.675    0.379   12.323    0.000    4.675    3.967
   .IM1               4.852    0.383   12.681    0.000    4.852    4.485
   .IM2               5.358    0.364   14.714    0.000    5.358    4.843
   .IM3               5.147    0.349   14.734    0.000    5.147    4.553

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.844    0.138    6.127    0.000    0.844    0.436
   .EEC2              0.472    0.152    3.113    0.002    0.472    0.242
   .EEC3              0.184    0.089    2.071    0.038    0.184    0.090
   .EEF1              0.219    0.054    4.036    0.000    0.219    0.142
   .EEF2              0.140    0.051    2.726    0.006    0.140    0.090
   .EEF3              0.292    0.101    2.899    0.004    0.292    0.210
   .IM1               0.627    0.299    2.099    0.036    0.627    0.536
   .IM2               0.323    0.122    2.657    0.008    0.323    0.264
   .IM3               0.368    0.257    1.432    0.152    0.368    0.288
   .EEC               0.734    0.164    4.469    0.000    0.672    0.672
   .EEF               0.663    0.172    3.853    0.000    0.499    0.499
   .IM                0.533    0.285    1.870    0.061    0.983    0.983
Grouped by eco condition
lavaan 0.6-19 ended normally after 83 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    EEF orientation                                 70
    EEC orientation                                 72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               106.729     104.107
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.025
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF orientation                             42.202      42.202
    EEC orientation                             61.905      61.905

Model Test Baseline Model:

  Test statistic                              1052.013     807.509
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.303

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.951       0.939
  Tucker-Lewis Index (TLI)                       0.927       0.908
                                                                  
  Robust Comparative Fit Index (CFI)                         0.952
  Robust Tucker-Lewis Index (TLI)                            0.927

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1505.216   -1505.216
  Scaling correction factor                                  1.520
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1451.851   -1451.851
  Scaling correction factor                                  1.284
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3142.432    3142.432
  Bayesian (BIC)                              3337.516    3337.516
  Sample-size adjusted Bayesian (SABIC)       3128.688    3128.688

Root Mean Square Error of Approximation:

  RMSEA                                          0.105       0.102
  90 Percent confidence interval - lower         0.071       0.068
  90 Percent confidence interval - upper         0.137       0.134
  P-value H_0: RMSEA <= 0.050                    0.006       0.009
  P-value H_0: RMSEA >= 0.080                    0.896       0.868
                                                                  
  Robust RMSEA                                               0.103
  90 Percent confidence interval - lower                     0.069
  90 Percent confidence interval - upper                     0.136
  P-value H_0: Robust RMSEA <= 0.050                         0.009
  P-value H_0: Robust RMSEA >= 0.080                         0.875

Standardized Root Mean Square Residual:

  SRMR                                           0.067       0.067

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.861    0.679
    EEC2              1.302    0.198    6.570    0.000    1.121    0.843
    EEC3              1.316    0.168    7.834    0.000    1.134    0.901
  EEF =~                                                                
    EEF1              1.000                               0.886    0.854
    EEF2              1.132    0.157    7.221    0.000    1.004    0.888
    EEF3              0.905    0.127    7.102    0.000    0.803    0.810
  IM =~                                                                 
    IM1               1.000                               0.936    0.859
    IM2               1.029    0.132    7.770    0.000    0.963    0.938
    IM3               0.724    0.246    2.943    0.003    0.678    0.581

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.553    0.143    3.861    0.000    0.584    0.584
    EEC               0.191    0.159    1.200    0.230    0.185    0.185
    ADT_high          0.247    0.197    1.256    0.209    0.279    0.137
  EEC ~                                                                 
    IM                0.332    0.136    2.442    0.015    0.361    0.361
    ADT_high          0.172    0.216    0.795    0.427    0.200    0.098
  IM ~                                                                  
    ADT_high          0.680    0.290    2.349    0.019    0.727    0.356

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.506    0.320   10.948    0.000    3.506    2.765
   .EEC2              3.443    0.451    7.638    0.000    3.443    2.588
   .EEC3              3.562    0.433    8.229    0.000    3.562    2.831
   .EEF1              4.352    0.404   10.765    0.000    4.352    4.192
   .EEF2              4.276    0.426   10.039    0.000    4.276    3.784
   .EEF3              4.587    0.364   12.610    0.000    4.587    4.627
   .IM1               4.112    0.495    8.302    0.000    4.112    3.772
   .IM2               4.609    0.476    9.690    0.000    4.609    4.487
   .IM3               4.655    0.397   11.729    0.000    4.655    3.990

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.866    0.171    5.068    0.000    0.866    0.539
   .EEC2              0.511    0.200    2.559    0.011    0.511    0.289
   .EEC3              0.297    0.148    2.014    0.044    0.297    0.188
   .EEF1              0.292    0.107    2.732    0.006    0.292    0.271
   .EEF2              0.270    0.104    2.596    0.009    0.270    0.211
   .EEF3              0.339    0.120    2.831    0.005    0.339    0.345
   .IM1               0.313    0.101    3.105    0.002    0.313    0.263
   .IM2               0.127    0.087    1.457    0.145    0.127    0.120
   .IM3               0.902    0.506    1.781    0.075    0.902    0.663
   .EEC               0.620    0.172    3.592    0.000    0.835    0.835
   .EEF               0.355    0.153    2.314    0.021    0.452    0.452
   .IM                0.765    0.240    3.189    0.001    0.873    0.873


Group 2 [EEC orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.954    0.766
    EEC2              1.459    0.210    6.962    0.000    1.392    0.897
    EEC3              1.471    0.182    8.102    0.000    1.403    0.980
  EEF =~                                                                
    EEF1              1.000                               1.131    0.911
    EEF2              0.982    0.094   10.471    0.000    1.110    0.935
    EEF3              0.953    0.070   13.695    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.831    0.788
    IM2               0.822    0.114    7.235    0.000    0.683    0.844
    IM3               0.847    0.150    5.652    0.000    0.704    0.908

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.418    0.156    2.680    0.007    0.307    0.307
    EEC               0.665    0.214    3.109    0.002    0.561    0.561
    ADT_high         -0.032    0.215   -0.150    0.881   -0.029   -0.014
  EEC ~                                                                 
    IM                0.504    0.132    3.825    0.000    0.439    0.439
    ADT_high          0.595    0.196    3.043    0.002    0.624    0.312
  IM ~                                                                  
    ADT_high          0.196    0.214    0.916    0.360    0.236    0.118

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.529    0.330   10.702    0.000    3.529    2.834
   .EEC2              3.064    0.515    5.953    0.000    3.064    1.974
   .EEC3              3.038    0.514    5.913    0.000    3.038    2.122
   .EEF1              4.608    0.445   10.349    0.000    4.608    3.714
   .EEF2              4.831    0.428   11.287    0.000    4.831    4.069
   .EEF3              4.936    0.426   11.599    0.000    4.936    4.231
   .IM1               5.039    0.345   14.585    0.000    5.039    4.780
   .IM2               5.647    0.288   19.587    0.000    5.647    6.981
   .IM3               5.556    0.276   20.166    0.000    5.556    7.167

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.641    0.131    4.872    0.000    0.641    0.413
   .EEC2              0.472    0.123    3.836    0.000    0.472    0.196
   .EEC3              0.082    0.070    1.175    0.240    0.082    0.040
   .EEF1              0.262    0.062    4.243    0.000    0.262    0.170
   .EEF2              0.177    0.063    2.788    0.005    0.177    0.126
   .EEF3              0.201    0.120    1.674    0.094    0.201    0.147
   .IM1               0.421    0.217    1.939    0.052    0.421    0.378
   .IM2               0.188    0.066    2.831    0.005    0.188    0.287
   .IM3               0.106    0.057    1.865    0.062    0.106    0.176
   .EEC               0.617    0.191    3.233    0.001    0.678    0.678
   .EEF               0.555    0.154    3.613    0.000    0.434    0.434
   .IM                0.681    0.187    3.632    0.000    0.986    0.986
GGplot

Reward

Eco-condition

EEC

IM

TR

Continuous TR
On reward groups
lavaan 0.6-19 ended normally after 51 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        84

  Number of observations per group:                   
    Control                                        109
    Performance-based reward                       105

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               203.279     216.274
  Degrees of freedom                                96          96
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.940
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    Control                                    100.170     100.170
    Performance-based reward                   116.104     116.104

Model Test Baseline Model:

  Test statistic                              2335.169    1715.730
  Degrees of freedom                               132         132
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.361

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.951       0.924
  Tucker-Lewis Index (TLI)                       0.933       0.896
                                                                  
  Robust Comparative Fit Index (CFI)                         0.948
  Robust Tucker-Lewis Index (TLI)                            0.928

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3225.606   -3225.606
  Scaling correction factor                                  1.717
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -3123.966   -3123.966
  Scaling correction factor                                  1.303
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6619.212    6619.212
  Bayesian (BIC)                              6901.954    6901.954
  Sample-size adjusted Bayesian (SABIC)       6635.779    6635.779

Root Mean Square Error of Approximation:

  RMSEA                                          0.102       0.108
  90 Percent confidence interval - lower         0.083       0.088
  90 Percent confidence interval - upper         0.122       0.128
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.968       0.989
                                                                  
  Robust RMSEA                                               0.105
  90 Percent confidence interval - lower                     0.086
  90 Percent confidence interval - upper                     0.124
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.985

Standardized Root Mean Square Residual:

  SRMR                                           0.073       0.073

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [Control]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.892    0.725
    EEC2              1.467    0.150    9.782    0.000    1.309    0.890
    EEC3              1.362    0.129   10.522    0.000    1.215    0.933
  EEF =~                                                                
    EEF1              1.000                               1.003    0.895
    EEF2              1.042    0.071   14.640    0.000    1.046    0.907
    EEF3              1.019    0.050   20.517    0.000    1.022    0.921
  IM =~                                                                 
    IM1               1.000                               1.136    0.919
    IM2               0.860    0.075   11.490    0.000    0.977    0.938
    IM3               0.842    0.103    8.166    0.000    0.957    0.803
  TR =~                                                                 
    TR1               1.000                               1.239    0.876
    TR2               1.149    0.080   14.339    0.000    1.424    0.939
    TR3               1.067    0.084   12.645    0.000    1.322    0.888

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.538    0.082    6.567    0.000    0.609    0.609
    TR                0.095    0.071    1.340    0.180    0.118    0.118
  EEC ~                                                                 
    IM                0.378    0.088    4.314    0.000    0.481    0.481
    TR                0.074    0.078    0.949    0.343    0.102    0.102
  IM ~                                                                  
    TR                0.218    0.112    1.944    0.052    0.237    0.237

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.266    0.078    3.387    0.001    0.455    0.455

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.165    0.118   35.341    0.000    4.165    3.385
   .EEC2              4.275    0.141   30.351    0.000    4.275    2.907
   .EEC3              4.294    0.125   34.445    0.000    4.294    3.299
   .EEF1              5.193    0.107   48.365    0.000    5.193    4.633
   .EEF2              5.303    0.110   47.999    0.000    5.303    4.597
   .EEF3              5.404    0.106   50.837    0.000    5.404    4.869
   .IM1               5.156    0.118   43.574    0.000    5.156    4.174
   .IM2               5.596    0.100   56.098    0.000    5.596    5.373
   .IM3               5.431    0.114   47.591    0.000    5.431    4.558
   .TR1               3.826    0.135   28.263    0.000    3.826    2.707
   .TR2               3.743    0.145   25.763    0.000    3.743    2.468
   .TR3               3.477    0.142   24.404    0.000    3.477    2.337

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.719    0.128    5.625    0.000    0.719    0.475
   .EEC2              0.450    0.113    3.979    0.000    0.450    0.208
   .EEC3              0.218    0.084    2.589    0.010    0.218    0.129
   .EEF1              0.250    0.070    3.576    0.000    0.250    0.199
   .EEF2              0.236    0.076    3.096    0.002    0.236    0.178
   .EEF3              0.186    0.075    2.493    0.013    0.186    0.151
   .IM1               0.236    0.070    3.354    0.001    0.236    0.155
   .IM2               0.130    0.042    3.077    0.002    0.130    0.120
   .IM3               0.504    0.321    1.570    0.116    0.504    0.355
   .TR1               0.463    0.130    3.574    0.000    0.463    0.232
   .TR2               0.274    0.111    2.469    0.014    0.274    0.119
   .TR3               0.466    0.159    2.924    0.003    0.466    0.211
   .EEC               0.584    0.135    4.332    0.000    0.735    0.735
   .EEF               0.585    0.128    4.579    0.000    0.581    0.581
   .IM                1.217    0.214    5.676    0.000    0.944    0.944
    TR                1.534    0.237    6.477    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.525
    EEC2              0.792
    EEC3              0.871
    EEF1              0.801
    EEF2              0.822
    EEF3              0.849
    IM1               0.845
    IM2               0.880
    IM3               0.645
    TR1               0.768
    TR2               0.881
    TR3               0.789
    EEC               0.265
    EEF               0.419
    IM                0.056


Group 2 [Performance-based reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.038    0.746
    EEC2              1.162    0.149    7.793    0.000    1.206    0.864
    EEC3              1.324    0.138    9.623    0.000    1.374    0.963
  EEF =~                                                                
    EEF1              1.000                               1.152    0.926
    EEF2              1.034    0.076   13.661    0.000    1.192    0.954
    EEF3              0.909    0.093    9.773    0.000    1.048    0.889
  IM =~                                                                 
    IM1               1.000                               0.737    0.681
    IM2               1.287    0.509    2.530    0.011    0.949    0.857
    IM3               1.294    0.548    2.364    0.018    0.954    0.844
  TR =~                                                                 
    TR1               1.000                               1.368    0.864
    TR2               1.090    0.080   13.580    0.000    1.491    0.951
    TR3               1.059    0.083   12.715    0.000    1.448    0.949

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.783    0.123    6.382    0.000    0.501    0.501
    TR                0.220    0.116    1.904    0.057    0.261    0.261
  EEC ~                                                                 
    IM                0.534    0.152    3.504    0.000    0.379    0.379
    TR                0.272    0.086    3.150    0.002    0.359    0.359
  IM ~                                                                  
    TR                0.112    0.108    1.035    0.301    0.207    0.207

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.352    0.169    2.083    0.037    0.454    0.454

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.333    0.136   31.909    0.000    4.333    3.114
   .EEC2              4.314    0.136   31.668    0.000    4.314    3.090
   .EEC3              4.429    0.139   31.808    0.000    4.429    3.104
   .EEF1              5.371    0.121   44.242    0.000    5.371    4.318
   .EEF2              5.562    0.122   45.624    0.000    5.562    4.452
   .EEF3              5.562    0.115   48.357    0.000    5.562    4.719
   .IM1               5.143    0.106   48.718    0.000    5.143    4.754
   .IM2               5.733    0.108   53.099    0.000    5.733    5.182
   .IM3               5.524    0.110   50.069    0.000    5.524    4.886
   .TR1               3.762    0.154   24.355    0.000    3.762    2.377
   .TR2               3.781    0.153   24.718    0.000    3.781    2.412
   .TR3               3.476    0.149   23.358    0.000    3.476    2.279

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.859    0.138    6.217    0.000    0.859    0.444
   .EEC2              0.495    0.157    3.161    0.002    0.495    0.254
   .EEC3              0.147    0.093    1.584    0.113    0.147    0.072
   .EEF1              0.220    0.054    4.045    0.000    0.220    0.142
   .EEF2              0.140    0.052    2.702    0.007    0.140    0.090
   .EEF3              0.291    0.100    2.911    0.004    0.291    0.209
   .IM1               0.627    0.305    2.058    0.040    0.627    0.536
   .IM2               0.324    0.122    2.660    0.008    0.324    0.265
   .IM3               0.368    0.262    1.406    0.160    0.368    0.288
   .TR1               0.634    0.164    3.864    0.000    0.634    0.253
   .TR2               0.233    0.078    2.999    0.003    0.233    0.095
   .TR3               0.229    0.084    2.734    0.006    0.229    0.099
   .EEC               0.723    0.155    4.675    0.000    0.671    0.671
   .EEF               0.832    0.296    2.814    0.005    0.626    0.626
   .IM                0.520    0.269    1.933    0.053    0.957    0.957
    TR                1.871    0.291    6.421    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.556
    EEC2              0.746
    EEC3              0.928
    EEF1              0.858
    EEF2              0.910
    EEF3              0.791
    IM1               0.464
    IM2               0.735
    IM3               0.712
    TR1               0.747
    TR2               0.905
    TR3               0.901
    EEC               0.329
    EEF               0.374
    IM                0.043
On eco groups
lavaan 0.6-19 ended normally after 47 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       126

  Number of observations per group:                   
    EEF orientation                                 70
    Combination of EEF and EEC                      72
    EEC orientation                                 72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               260.132     268.098
  Degrees of freedom                               144         144
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.970
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF orientation                             71.903      71.903
    Combination of EEF and EEC                  99.550      99.550
    EEC orientation                             96.644      96.644

Model Test Baseline Model:

  Test statistic                              2331.901    1848.415
  Degrees of freedom                               198         198
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.262

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.946       0.925
  Tucker-Lewis Index (TLI)                       0.925       0.897
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.920

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2998.573   -2998.573
  Scaling correction factor                                  1.563
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2868.507   -2868.507
  Scaling correction factor                                  1.247
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6249.147    6249.147
  Bayesian (BIC)                              6673.260    6673.260
  Sample-size adjusted Bayesian (SABIC)       6273.997    6273.997

Root Mean Square Error of Approximation:

  RMSEA                                          0.106       0.110
  90 Percent confidence interval - lower         0.085       0.089
  90 Percent confidence interval - upper         0.127       0.131
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.979       0.989
                                                                  
  Robust RMSEA                                               0.108
  90 Percent confidence interval - lower                     0.088
  90 Percent confidence interval - upper                     0.128
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.988

Standardized Root Mean Square Residual:

  SRMR                                           0.078       0.078

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.864    0.681
    EEC2              1.290    0.195    6.622    0.000    1.114    0.838
    EEC3              1.319    0.170    7.751    0.000    1.139    0.906
  EEF =~                                                                
    EEF1              1.000                               0.888    0.855
    EEF2              1.129    0.160    7.061    0.000    1.003    0.887
    EEF3              0.903    0.128    7.079    0.000    0.802    0.809
  IM =~                                                                 
    IM1               1.000                               0.961    0.881
    IM2               0.978    0.142    6.901    0.000    0.940    0.915
    IM3               0.693    0.260    2.664    0.008    0.665    0.570
  ADT =~                                                                
    ADT1              1.000                               0.823    0.793
    ADT2              1.220    0.169    7.233    0.000    1.003    0.914
    ADT3              1.280    0.182    7.017    0.000    1.053    0.905

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.549    0.148    3.705    0.000    0.594    0.594
    EEC               0.179    0.159    1.124    0.261    0.174    0.174
    ADT               0.103    0.142    0.721    0.471    0.095    0.095
  EEC ~                                                                 
    IM                0.263    0.146    1.803    0.071    0.292    0.292
    ADT               0.211    0.155    1.367    0.172    0.201    0.201
  IM ~                                                                  
    ADT               0.613    0.262    2.339    0.019    0.525    0.525

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.143    0.152   27.333    0.000    4.143    3.267
   .EEC2              4.271    0.159   26.868    0.000    4.271    3.211
   .EEC3              4.400    0.150   29.260    0.000    4.400    3.497
   .EEF1              5.471    0.124   44.095    0.000    5.471    5.270
   .EEF2              5.543    0.135   41.042    0.000    5.543    4.906
   .EEF3              5.600    0.118   47.260    0.000    5.600    5.649
   .IM1               5.200    0.130   39.906    0.000    5.200    4.770
   .IM2               5.729    0.123   46.665    0.000    5.729    5.578
   .IM3               5.443    0.139   39.034    0.000    5.443    4.665
   .ADT1              5.457    0.124   44.001    0.000    5.457    5.259
   .ADT2              5.371    0.131   40.941    0.000    5.371    4.893
   .ADT3              5.300    0.139   38.124    0.000    5.300    4.557

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.862    0.170    5.062    0.000    0.862    0.536
   .EEC2              0.527    0.201    2.618    0.009    0.527    0.298
   .EEC3              0.285    0.145    1.968    0.049    0.285    0.180
   .EEF1              0.289    0.105    2.748    0.006    0.289    0.268
   .EEF2              0.271    0.111    2.448    0.014    0.271    0.212
   .EEF3              0.339    0.119    2.850    0.004    0.339    0.345
   .IM1               0.266    0.112    2.372    0.018    0.266    0.223
   .IM2               0.171    0.098    1.757    0.079    0.171    0.163
   .IM3               0.918    0.518    1.774    0.076    0.918    0.675
   .ADT1              0.400    0.123    3.243    0.001    0.400    0.371
   .ADT2              0.198    0.100    1.972    0.049    0.198    0.164
   .ADT3              0.245    0.092    2.648    0.008    0.245    0.181
   .EEC               0.607    0.165    3.680    0.000    0.812    0.812
   .EEF               0.358    0.152    2.348    0.019    0.454    0.454
   .IM                0.669    0.167    3.995    0.000    0.724    0.724
    ADT               0.677    0.137    4.924    0.000    1.000    1.000


Group 2 [Combination of EEF and EEC]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.035    0.759
    EEC2              1.135    0.186    6.119    0.000    1.175    0.868
    EEC3              1.240    0.156    7.946    0.000    1.283    0.944
  EEF =~                                                                
    EEF1              1.000                               1.140    0.940
    EEF2              1.067    0.055   19.496    0.000    1.217    0.967
    EEF3              0.991    0.099    9.968    0.000    1.130    0.938
  IM =~                                                                 
    IM1               1.000                               0.988    0.767
    IM2               1.162    0.304    3.822    0.000    1.148    0.901
    IM3               1.322    0.330    4.010    0.000    1.306    0.948
  ADT =~                                                                
    ADT1              1.000                               0.985    0.956
    ADT2              0.894    0.069   13.004    0.000    0.881    0.907
    ADT3              0.984    0.085   11.591    0.000    0.970    0.831

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.356    0.114    3.111    0.002    0.308    0.308
    EEC               0.448    0.173    2.583    0.010    0.406    0.406
    ADT               0.282    0.137    2.058    0.040    0.244    0.244
  EEC ~                                                                 
    IM                0.389    0.116    3.358    0.001    0.371    0.371
    ADT               0.486    0.121    4.009    0.000    0.463    0.463
  IM ~                                                                  
    ADT               0.248    0.222    1.118    0.263    0.247    0.247

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.028    0.161   25.057    0.000    4.028    2.953
   .EEC2              4.028    0.160   25.247    0.000    4.028    2.975
   .EEC3              4.111    0.160   25.656    0.000    4.111    3.024
   .EEF1              5.000    0.143   34.966    0.000    5.000    4.121
   .EEF2              5.167    0.148   34.841    0.000    5.167    4.106
   .EEF3              5.181    0.142   36.461    0.000    5.181    4.297
   .IM1               4.917    0.152   32.383    0.000    4.917    3.816
   .IM2               5.375    0.150   35.797    0.000    5.375    4.219
   .IM3               5.181    0.162   31.908    0.000    5.181    3.760
   .ADT1              5.278    0.121   43.462    0.000    5.278    5.122
   .ADT2              5.264    0.115   45.965    0.000    5.264    5.417
   .ADT3              5.167    0.137   37.578    0.000    5.167    4.429

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.790    0.164    4.805    0.000    0.790    0.425
   .EEC2              0.453    0.186    2.434    0.015    0.453    0.247
   .EEC3              0.202    0.102    1.991    0.046    0.202    0.109
   .EEF1              0.172    0.052    3.299    0.001    0.172    0.117
   .EEF2              0.103    0.047    2.180    0.029    0.103    0.065
   .EEF3              0.176    0.076    2.302    0.021    0.176    0.121
   .IM1               0.684    0.337    2.028    0.043    0.684    0.412
   .IM2               0.306    0.084    3.635    0.000    0.306    0.189
   .IM3               0.192    0.102    1.874    0.061    0.192    0.101
   .ADT1              0.091    0.052    1.746    0.081    0.091    0.085
   .ADT2              0.168    0.069    2.426    0.015    0.168    0.178
   .ADT3              0.421    0.212    1.985    0.047    0.421    0.309
   .EEC               0.602    0.138    4.366    0.000    0.562    0.562
   .EEF               0.536    0.119    4.485    0.000    0.412    0.412
   .IM                0.916    0.305    3.003    0.003    0.939    0.939
    ADT               0.971    0.269    3.608    0.000    1.000    1.000


Group 3 [EEC orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.953    0.765
    EEC2              1.459    0.209    6.965    0.000    1.390    0.896
    EEC3              1.474    0.182    8.109    0.000    1.405    0.981
  EEF =~                                                                
    EEF1              1.000                               1.130    0.911
    EEF2              0.983    0.094   10.403    0.000    1.111    0.936
    EEF3              0.953    0.069   13.751    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.832    0.789
    IM2               0.823    0.113    7.296    0.000    0.684    0.846
    IM3               0.844    0.146    5.781    0.000    0.702    0.906
  ADT =~                                                                
    ADT1              1.000                               0.923    0.878
    ADT2              1.062    0.116    9.165    0.000    0.980    0.894
    ADT3              1.231    0.120   10.222    0.000    1.137    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.432    0.160    2.708    0.007    0.318    0.318
    EEC               0.637    0.216    2.952    0.003    0.537    0.537
    ADT               0.046    0.116    0.398    0.690    0.038    0.038
  EEC ~                                                                 
    IM                0.549    0.133    4.125    0.000    0.479    0.479
    ADT               0.345    0.112    3.077    0.002    0.334    0.334
  IM ~                                                                  
    ADT              -0.013    0.126   -0.106    0.916   -0.015   -0.015

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.569    0.147   31.136    0.000    4.569    3.669
   .EEC2              4.583    0.183   25.053    0.000    4.583    2.953
   .EEC3              4.569    0.169   27.075    0.000    4.569    3.191
   .EEF1              5.375    0.146   36.753    0.000    5.375    4.331
   .EEF2              5.583    0.140   39.902    0.000    5.583    4.702
   .EEF3              5.667    0.137   41.214    0.000    5.667    4.857
   .IM1               5.333    0.124   42.933    0.000    5.333    5.060
   .IM2               5.889    0.095   61.774    0.000    5.889    7.280
   .IM3               5.806    0.091   63.540    0.000    5.806    7.488
   .ADT1              5.431    0.124   43.810    0.000    5.431    5.163
   .ADT2              5.361    0.129   41.476    0.000    5.361    4.888
   .ADT3              5.278    0.147   35.836    0.000    5.278    4.223

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.642    0.133    4.838    0.000    0.642    0.414
   .EEC2              0.476    0.124    3.829    0.000    0.476    0.198
   .EEC3              0.076    0.071    1.073    0.283    0.076    0.037
   .EEF1              0.263    0.063    4.190    0.000    0.263    0.171
   .EEF2              0.176    0.062    2.823    0.005    0.176    0.125
   .EEF3              0.201    0.120    1.681    0.093    0.201    0.148
   .IM1               0.419    0.214    1.960    0.050    0.419    0.377
   .IM2               0.186    0.065    2.862    0.004    0.186    0.285
   .IM3               0.108    0.056    1.940    0.052    0.108    0.179
   .ADT1              0.253    0.090    2.828    0.005    0.253    0.229
   .ADT2              0.242    0.094    2.578    0.010    0.242    0.201
   .ADT3              0.269    0.103    2.608    0.009    0.269    0.172
   .EEC               0.603    0.182    3.322    0.001    0.664    0.664
   .EEF               0.554    0.153    3.612    0.000    0.434    0.434
   .IM                0.692    0.193    3.593    0.000    1.000    1.000
    ADT               0.853    0.178    4.791    0.000    1.000    1.000
GG plot
`geom_smooth()` using formula = 'y ~ x'

`geom_smooth()` using formula = 'y ~ x'

TR as categorical variable
SEM
Grouped by reward
Note: High trust is defined as answering above 5 on the scale
lavaan 0.6-19 ended normally after 85 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    Control                                         73
    Performance-based reward                        69

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               116.119     132.195
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.878
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    Control                                     65.749      65.749
    Performance-based reward                    66.446      66.446

Model Test Baseline Model:

  Test statistic                              1014.396     750.037
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.352

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.939       0.891
  Tucker-Lewis Index (TLI)                       0.909       0.836
                                                                  
  Robust Comparative Fit Index (CFI)                         0.929
  Robust Tucker-Lewis Index (TLI)                            0.893

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1534.447   -1534.447
  Scaling correction factor                                  1.778
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1476.388   -1476.388
  Scaling correction factor                                  1.349
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3200.895    3200.895
  Bayesian (BIC)                              3395.979    3395.979
  Sample-size adjusted Bayesian (SABIC)       3187.151    3187.151

Root Mean Square Error of Approximation:

  RMSEA                                          0.115       0.130
  90 Percent confidence interval - lower         0.083       0.098
  90 Percent confidence interval - upper         0.146       0.162
  P-value H_0: RMSEA <= 0.050                    0.001       0.000
  P-value H_0: RMSEA >= 0.080                    0.963       0.994
                                                                  
  Robust RMSEA                                               0.122
  90 Percent confidence interval - lower                     0.094
  90 Percent confidence interval - upper                     0.150
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.992

Standardized Root Mean Square Residual:

  SRMR                                           0.069       0.069

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [Control]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.955    0.766
    EEC2              1.437    0.164    8.744    0.000    1.373    0.878
    EEC3              1.372    0.141    9.751    0.000    1.311    0.957
  EEF =~                                                                
    EEF1              1.000                               0.994    0.879
    EEF2              1.018    0.104    9.828    0.000    1.012    0.884
    EEF3              0.996    0.066   15.055    0.000    0.990    0.900
  IM =~                                                                 
    IM1               1.000                               0.964    0.851
    IM2               1.002    0.091   11.034    0.000    0.966    0.985
    IM3               0.824    0.154    5.355    0.000    0.794    0.730

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.468    0.125    3.756    0.000    0.454    0.454
    EEC               0.429    0.121    3.533    0.000    0.412    0.412
    TR_high           0.288    0.201    1.428    0.153    0.289    0.107
  EEC ~                                                                 
    IM                0.364    0.129    2.813    0.005    0.367    0.367
    TR_high           0.582    0.295    1.972    0.049    0.610    0.226
  IM ~                                                                  
    TR_high          -0.077    0.268   -0.287    0.774   -0.080   -0.030

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.601    0.374    9.637    0.000    3.601    2.887
   .EEC2              3.346    0.533    6.274    0.000    3.346    2.140
   .EEC3              3.484    0.489    7.122    0.000    3.484    2.543
   .EEF1              4.731    0.373   12.671    0.000    4.731    4.184
   .EEF2              4.831    0.369   13.092    0.000    4.831    4.220
   .EEF3              4.926    0.365   13.502    0.000    4.926    4.480
   .IM1               5.336    0.358   14.913    0.000    5.336    4.714
   .IM2               5.761    0.356   16.192    0.000    5.761    5.879
   .IM3               5.581    0.298   18.700    0.000    5.581    5.134

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.644    0.160    4.029    0.000    0.644    0.414
   .EEC2              0.561    0.166    3.384    0.001    0.561    0.229
   .EEC3              0.159    0.095    1.671    0.095    0.159    0.085
   .EEF1              0.291    0.101    2.881    0.004    0.291    0.227
   .EEF2              0.287    0.107    2.673    0.008    0.287    0.219
   .EEF3              0.229    0.105    2.192    0.028    0.229    0.190
   .IM1               0.353    0.092    3.844    0.000    0.353    0.276
   .IM2               0.028    0.050    0.553    0.580    0.028    0.029
   .IM3               0.551    0.440    1.253    0.210    0.551    0.466
   .EEC               0.747    0.196    3.809    0.000    0.819    0.819
   .EEF               0.456    0.153    2.986    0.003    0.461    0.461
   .IM                0.928    0.290    3.200    0.001    0.999    0.999


Group 2 [Performance-based reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.869    0.672
    EEC2              1.293    0.250    5.166    0.000    1.123    0.857
    EEC3              1.447    0.244    5.936    0.000    1.257    0.951
  EEF =~                                                                
    EEF1              1.000                               1.032    0.898
    EEF2              1.046    0.152    6.867    0.000    1.079    0.936
    EEF3              0.860    0.118    7.269    0.000    0.888    0.847
  IM =~                                                                 
    IM1               1.000                               0.926    0.919
    IM2               0.613    0.259    2.367    0.018    0.568    0.675
    IM3               0.513    0.239    2.142    0.032    0.475    0.533

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.567    0.172    3.291    0.001    0.509    0.509
    EEC               0.371    0.210    1.770    0.077    0.313    0.313
    TR_high          -0.056    0.255   -0.220    0.826   -0.054   -0.019
  EEC ~                                                                 
    IM                0.421    0.137    3.080    0.002    0.449    0.449
    TR_high           0.512    0.284    1.806    0.071    0.590    0.208
  IM ~                                                                  
    TR_high           0.803    0.299    2.681    0.007    0.866    0.305

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.504    0.331   10.575    0.000    3.504    2.712
   .EEC2              3.335    0.400    8.333    0.000    3.335    2.543
   .EEC3              3.200    0.436    7.343    0.000    3.200    2.422
   .EEF1              4.732    0.413   11.448    0.000    4.732    4.119
   .EEF2              4.869    0.409   11.911    0.000    4.869    4.222
   .EEF3              5.079    0.400   12.691    0.000    5.079    4.848
   .IM1               4.371    0.391   11.184    0.000    4.371    4.333
   .IM2               5.393    0.306   17.614    0.000    5.393    6.409
   .IM3               5.282    0.211   25.023    0.000    5.282    5.927

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.915    0.163    5.607    0.000    0.915    0.548
   .EEC2              0.458    0.171    2.674    0.007    0.458    0.266
   .EEC3              0.166    0.135    1.227    0.220    0.166    0.095
   .EEF1              0.255    0.074    3.463    0.001    0.255    0.193
   .EEF2              0.165    0.081    2.042    0.041    0.165    0.124
   .EEF3              0.310    0.133    2.338    0.019    0.310    0.282
   .IM1               0.159    0.169    0.943    0.346    0.159    0.156
   .IM2               0.386    0.179    2.155    0.031    0.386    0.545
   .IM3               0.569    0.305    1.865    0.062    0.569    0.716
   .EEC               0.527    0.190    2.777    0.005    0.698    0.698
   .EEF               0.522    0.163    3.196    0.001    0.490    0.490
   .IM                0.779    0.297    2.625    0.009    0.907    0.907
Grouped by eco condition
lavaan 0.6-19 ended normally after 88 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    EEF orientation                                 70
    EEC orientation                                 72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               110.974     106.612
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.041
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF orientation                             47.760      47.760
    EEC orientation                             58.853      58.853

Model Test Baseline Model:

  Test statistic                              1046.682     808.080
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.295

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.947       0.935
  Tucker-Lewis Index (TLI)                       0.920       0.903
                                                                  
  Robust Comparative Fit Index (CFI)                         0.948
  Robust Tucker-Lewis Index (TLI)                            0.922

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1510.004   -1510.004
  Scaling correction factor                                  1.495
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1454.517   -1454.517
  Scaling correction factor                                  1.279
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3152.008    3152.008
  Bayesian (BIC)                              3347.092    3347.092
  Sample-size adjusted Bayesian (SABIC)       3138.264    3138.264

Root Mean Square Error of Approximation:

  RMSEA                                          0.109       0.105
  90 Percent confidence interval - lower         0.077       0.072
  90 Percent confidence interval - upper         0.141       0.136
  P-value H_0: RMSEA <= 0.050                    0.003       0.005
  P-value H_0: RMSEA >= 0.080                    0.934       0.899
                                                                  
  Robust RMSEA                                               0.107
  90 Percent confidence interval - lower                     0.073
  90 Percent confidence interval - upper                     0.139
  P-value H_0: Robust RMSEA <= 0.050                         0.005
  P-value H_0: Robust RMSEA >= 0.080                         0.907

Standardized Root Mean Square Residual:

  SRMR                                           0.069       0.069

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.868    0.684
    EEC2              1.283    0.196    6.555    0.000    1.113    0.837
    EEC3              1.313    0.172    7.640    0.000    1.139    0.905
  EEF =~                                                                
    EEF1              1.000                               0.878    0.846
    EEF2              1.152    0.158    7.300    0.000    1.012    0.895
    EEF3              0.911    0.126    7.238    0.000    0.801    0.808
  IM =~                                                                 
    IM1               1.000                               0.922    0.846
    IM2               1.060    0.123    8.643    0.000    0.977    0.951
    IM3               0.739    0.233    3.171    0.002    0.682    0.584

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.591    0.149    3.965    0.000    0.621    0.621
    EEC               0.207    0.155    1.334    0.182    0.205    0.205
    TR_high           0.029    0.226    0.129    0.898    0.033    0.012
  EEC ~                                                                 
    IM                0.349    0.135    2.581    0.010    0.371    0.371
    TR_high           0.355    0.272    1.305    0.192    0.410    0.154
  IM ~                                                                  
    TR_high           0.268    0.298    0.899    0.369    0.290    0.109

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.617    0.353   10.240    0.000    3.617    2.852
   .EEC2              3.597    0.431    8.352    0.000    3.597    2.704
   .EEC3              3.710    0.431    8.612    0.000    3.710    2.949
   .EEF1              5.143    0.360   14.294    0.000    5.143    4.954
   .EEF2              5.165    0.402   12.853    0.000    5.165    4.571
   .EEF3              5.301    0.346   15.300    0.000    5.301    5.347
   .IM1               4.886    0.377   12.945    0.000    4.886    4.482
   .IM2               5.396    0.383   14.100    0.000    5.396    5.254
   .IM3               5.211    0.298   17.466    0.000    5.211    4.467

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.855    0.172    4.966    0.000    0.855    0.532
   .EEC2              0.531    0.204    2.599    0.009    0.531    0.300
   .EEC3              0.286    0.151    1.893    0.058    0.286    0.181
   .EEF1              0.306    0.109    2.806    0.005    0.306    0.284
   .EEF2              0.253    0.104    2.435    0.015    0.253    0.198
   .EEF3              0.342    0.123    2.774    0.006    0.342    0.348
   .IM1               0.339    0.093    3.652    0.000    0.339    0.285
   .IM2               0.100    0.075    1.335    0.182    0.100    0.095
   .IM3               0.896    0.495    1.811    0.070    0.896    0.659
   .EEC               0.622    0.166    3.751    0.000    0.826    0.826
   .EEF               0.364    0.154    2.356    0.018    0.472    0.472
   .IM                0.840    0.290    2.896    0.004    0.988    0.988


Group 2 [EEC orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.956    0.767
    EEC2              1.455    0.208    7.012    0.000    1.391    0.896
    EEC3              1.469    0.182    8.054    0.000    1.404    0.980
  EEF =~                                                                
    EEF1              1.000                               1.131    0.911
    EEF2              0.982    0.094   10.493    0.000    1.110    0.935
    EEF3              0.953    0.069   13.766    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.831    0.788
    IM2               0.822    0.114    7.212    0.000    0.683    0.844
    IM3               0.847    0.150    5.642    0.000    0.704    0.908

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.424    0.159    2.670    0.008    0.311    0.311
    EEC               0.635    0.207    3.071    0.002    0.537    0.537
    TR_high           0.158    0.188    0.839    0.402    0.140    0.048
  EEC ~                                                                 
    IM                0.505    0.126    4.011    0.000    0.439    0.439
    TR_high           0.822    0.236    3.482    0.000    0.860    0.297
  IM ~                                                                  
    TR_high           0.287    0.293    0.979    0.327    0.345    0.119

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.468    0.340   10.214    0.000    3.468    2.785
   .EEC2              2.981    0.497    6.000    0.000    2.981    1.920
   .EEC3              2.952    0.467    6.323    0.000    2.952    2.061
   .EEF1              4.358    0.393   11.097    0.000    4.358    3.511
   .EEF2              4.584    0.373   12.281    0.000    4.584    3.861
   .EEF3              4.697    0.382   12.290    0.000    4.697    4.026
   .IM1               5.007    0.364   13.756    0.000    5.007    4.750
   .IM2               5.620    0.295   19.045    0.000    5.620    6.948
   .IM3               5.529    0.286   19.337    0.000    5.529    7.131

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.638    0.133    4.776    0.000    0.638    0.411
   .EEC2              0.475    0.123    3.861    0.000    0.475    0.197
   .EEC3              0.080    0.067    1.199    0.231    0.080    0.039
   .EEF1              0.262    0.062    4.230    0.000    0.262    0.170
   .EEF2              0.177    0.063    2.794    0.005    0.177    0.126
   .EEF3              0.200    0.119    1.681    0.093    0.200    0.147
   .IM1               0.421    0.216    1.945    0.052    0.421    0.379
   .IM2               0.188    0.067    2.829    0.005    0.188    0.288
   .IM3               0.105    0.057    1.849    0.064    0.105    0.175
   .EEC               0.628    0.189    3.318    0.001    0.687    0.687
   .EEF               0.552    0.153    3.616    0.000    0.432    0.432
   .IM                0.680    0.187    3.646    0.000    0.986    0.986
GGplot

Reward

Eco-condition

EEF

EEC

IM

Complete theoretical model

Two DVs with dummies for moderators

Complete theoretical model
lavaan 0.6-19 ended normally after 111 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        48

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               237.626     252.700
  Degrees of freedom                               150         150
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.940
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1771.294    1633.267
  Degrees of freedom                               189         189
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.085

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945       0.929
  Tucker-Lewis Index (TLI)                       0.930       0.910
                                                                  
  Robust Comparative Fit Index (CFI)                         0.938
  Robust Tucker-Lewis Index (TLI)                            0.922

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2355.129   -2355.129
  Scaling correction factor                                  1.621
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2236.316   -2236.316
  Scaling correction factor                                  1.105
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4806.259    4806.259
  Bayesian (BIC)                              4967.826    4967.826
  Sample-size adjusted Bayesian (SABIC)       4815.726    4815.726

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.057
  90 Percent confidence interval - lower         0.039       0.044
  90 Percent confidence interval - upper         0.065       0.069
  P-value H_0: RMSEA <= 0.050                    0.372       0.189
  P-value H_0: RMSEA >= 0.080                    0.000       0.001
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.043
  90 Percent confidence interval - upper                     0.066
  P-value H_0: Robust RMSEA <= 0.050                         0.241
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.056       0.056

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.843    0.000    1.257    0.876
    EEC3              1.324    0.093   14.306    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.051    0.000    1.128    0.933
    EEF3              0.962    0.054   17.777    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.955    0.822
    IM2               0.992    0.178    5.589    0.000    0.948    0.881
    IM3               0.994    0.196    5.066    0.000    0.949    0.816

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.130    0.406    0.321    0.748    0.136    0.049
    reward0_eco2      0.415    0.398    1.042    0.297    0.434    0.162
    reward1_eco2      0.600    0.342    1.755    0.079    0.628    0.235
    reward0_eco3     -0.179    0.404   -0.444    0.657   -0.188   -0.070
    reward1_eco3     -0.037    0.442   -0.084    0.933   -0.039   -0.015
    ADT_high_num      0.557    0.352    1.582    0.114    0.583    0.291
    TR_high_num      -0.062    0.287   -0.217    0.828   -0.065   -0.023
    reward1_c1_ADT    0.074    0.448    0.166    0.868    0.078    0.024
    reward0_c2_ADT   -0.265    0.458   -0.579    0.562   -0.277   -0.084
    reward1_c2_ADT   -0.500    0.428   -1.169    0.243   -0.523   -0.129
    reward0_c3_ADT    0.300    0.494    0.607    0.544    0.314    0.078
    reward1_c3_ADT   -0.165    0.517   -0.319    0.750   -0.172   -0.048
    reward1_ec1_TR    0.530    0.482    1.099    0.272    0.555    0.075
    reward0_ec2_TR    0.129    0.554    0.234    0.815    0.135    0.018
    reward1_ec2_TR    0.481    0.415    1.158    0.247    0.503    0.083
    reward0_ec3_TR    0.895    0.517    1.733    0.083    0.937    0.090
    reward1_ec3_TR   -0.572    0.606   -0.944    0.345   -0.598   -0.099
  EEF ~                                                                 
    IM                0.704    0.077    9.097    0.000    0.624    0.624
    reward1_eco1      0.095    0.185    0.513    0.608    0.088    0.032
    reward0_eco2     -0.188    0.203   -0.925    0.355   -0.174   -0.065
    reward1_eco2     -0.001    0.194   -0.005    0.996   -0.001   -0.000
    reward0_eco3     -0.231    0.179   -1.292    0.196   -0.215   -0.080
    reward1_eco3     -0.068    0.203   -0.336    0.737   -0.063   -0.024
  EEC ~                                                                 
    IM                0.499    0.078    6.403    0.000    0.489    0.489
    reward1_eco1      0.152    0.206    0.739    0.460    0.156    0.056
    reward0_eco2      0.133    0.221    0.604    0.546    0.137    0.051
    reward1_eco2      0.175    0.214    0.821    0.412    0.180    0.067
    reward0_eco3      0.051    0.185    0.277    0.782    0.053    0.020
    reward1_eco3      0.002    0.222    0.008    0.994    0.002    0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.339    0.115    2.940    0.003    0.490    0.490

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.412    0.000    0.780    0.451
   .EEC2              0.477    0.104    4.591    0.000    0.477    0.232
   .EEC3              0.204    0.062    3.303    0.001    0.204    0.109
   .EEF1              0.246    0.046    5.370    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.120    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.803    0.000    0.240    0.183
   .IM1               0.439    0.182    2.415    0.016    0.439    0.324
   .IM2               0.259    0.084    3.084    0.002    0.259    0.224
   .IM3               0.451    0.229    1.970    0.049    0.451    0.333
   .EEC               0.701    0.120    5.835    0.000    0.739    0.739
   .EEF               0.684    0.171    3.994    0.000    0.589    0.589
   .IM                0.761    0.189    4.021    0.000    0.834    0.834

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.676
    IM2               0.776
    IM3               0.667
    EEC               0.261
    EEF               0.411
    IM                0.166
Complete theoretical model with partial mediation
lavaan 0.6-19 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        33

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                49.175      60.142
  Degrees of freedom                                24          24
  P-value (Chi-square)                           0.002       0.000
  Scaling correction factor                                  0.818
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               290.659     324.975
  Degrees of freedom                                54          54
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.894

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.894       0.867
  Tucker-Lewis Index (TLI)                       0.761       0.700
                                                                  
  Robust Comparative Fit Index (CFI)                         0.878
  Robust Tucker-Lewis Index (TLI)                            0.726

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -861.722    -861.722
  Scaling correction factor                                  1.009
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -837.134    -837.134
  Scaling correction factor                                  0.928
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1789.443    1789.443
  Bayesian (BIC)                              1900.521    1900.521
  Sample-size adjusted Bayesian (SABIC)       1795.952    1795.952

Root Mean Square Error of Approximation:

  RMSEA                                          0.070       0.084
  90 Percent confidence interval - lower         0.042       0.055
  90 Percent confidence interval - upper         0.098       0.114
  P-value H_0: RMSEA <= 0.050                    0.113       0.029
  P-value H_0: RMSEA >= 0.080                    0.299       0.615
                                                                  
  Robust RMSEA                                               0.076
  90 Percent confidence interval - lower                     0.052
  90 Percent confidence interval - upper                     0.100
  P-value H_0: Robust RMSEA <= 0.050                         0.038
  P-value H_0: Robust RMSEA >= 0.080                         0.412

Standardized Root Mean Square Residual:

  SRMR                                           0.040       0.040

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.105    0.394    0.266    0.790    0.105    0.037
    reward0_eco2      0.430    0.396    1.084    0.278    0.430    0.158
    reward1_eco2      0.590    0.340    1.733    0.083    0.590    0.218
    reward0_eco3     -0.183    0.409   -0.447    0.655   -0.183   -0.068
    reward1_eco3     -0.028    0.434   -0.065    0.948   -0.028   -0.010
    ADT_high_num      0.522    0.322    1.621    0.105    0.522    0.257
    TR_high_num      -0.063    0.297   -0.214    0.831   -0.063   -0.022
    reward1_c1_ADT    0.104    0.440    0.236    0.813    0.104    0.031
    reward0_c2_ADT   -0.258    0.456   -0.565    0.572   -0.258   -0.077
    reward1_c2_ADT   -0.492    0.409   -1.202    0.229   -0.492   -0.120
    reward0_c3_ADT    0.308    0.502    0.614    0.539    0.308    0.075
    reward1_c3_ADT   -0.180    0.507   -0.355    0.723   -0.180   -0.049
    reward1_ec1_TR    0.452    0.552    0.820    0.412    0.452    0.060
    reward0_ec2_TR    0.073    0.549    0.133    0.895    0.073    0.010
    reward1_ec2_TR    0.452    0.419    1.079    0.281    0.452    0.074
    reward0_ec3_TR    0.869    0.537    1.619    0.105    0.869    0.082
    reward1_ec3_TR   -0.575    0.572   -1.005    0.315   -0.575   -0.094
  EEF_composite ~                                                       
    IM_composite      0.625    0.068    9.145    0.000    0.625    0.568
    reward1_eco1      0.132    0.186    0.707    0.480    0.132    0.043
    reward0_eco2     -0.173    0.205   -0.843    0.399   -0.173   -0.058
    reward1_eco2      0.031    0.191    0.161    0.872    0.031    0.010
    reward0_eco3     -0.242    0.180   -1.346    0.178   -0.242   -0.081
    reward1_eco3     -0.104    0.205   -0.504    0.614   -0.104   -0.035
  EEC_composite ~                                                       
    IM_composite      0.592    0.072    8.179    0.000    0.592    0.486
    reward1_eco1      0.206    0.246    0.839    0.401    0.206    0.060
    reward0_eco2      0.227    0.262    0.868    0.386    0.227    0.069
    reward1_eco2      0.313    0.239    1.313    0.189    0.313    0.095
    reward0_eco3      0.098    0.212    0.464    0.643    0.098    0.030
    reward1_eco3      0.020    0.261    0.075    0.940    0.020    0.006

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.444    0.096    4.625    0.000    0.444    0.466

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.886    0.110    8.034    0.000    0.886    0.862
   .EEF_composite     0.810    0.124    6.525    0.000    0.810    0.651
   .EEC_composite     1.123    0.116    9.704    0.000    1.123    0.736

R-Square:
                   Estimate
    IM_composite      0.138
    EEF_composite     0.349
    EEC_composite     0.264
Complete theoretical model with full mediation
lavaan 0.6-19 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        23

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                56.516      64.619
  Degrees of freedom                                34          34
  P-value (Chi-square)                           0.009       0.001
  Scaling correction factor                                  0.875
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               290.659     324.975
  Degrees of freedom                                54          54
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.894

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.905       0.887
  Tucker-Lewis Index (TLI)                       0.849       0.821
                                                                  
  Robust Comparative Fit Index (CFI)                         0.890
  Robust Tucker-Lewis Index (TLI)                            0.825

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -865.392    -865.392
  Scaling correction factor                                  1.008
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -837.134    -837.134
  Scaling correction factor                                  0.928
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1776.784    1776.784
  Bayesian (BIC)                              1854.202    1854.202
  Sample-size adjusted Bayesian (SABIC)       1781.321    1781.321

Root Mean Square Error of Approximation:

  RMSEA                                          0.056       0.065
  90 Percent confidence interval - lower         0.028       0.038
  90 Percent confidence interval - upper         0.081       0.090
  P-value H_0: RMSEA <= 0.050                    0.335       0.161
  P-value H_0: RMSEA >= 0.080                    0.054       0.176
                                                                  
  Robust RMSEA                                               0.061
  90 Percent confidence interval - lower                     0.038
  90 Percent confidence interval - upper                     0.083
  P-value H_0: Robust RMSEA <= 0.050                         0.204
  P-value H_0: Robust RMSEA >= 0.080                         0.080

Standardized Root Mean Square Residual:

  SRMR                                           0.042       0.042

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.105    0.394    0.266    0.790    0.105    0.037
    reward0_eco2      0.430    0.396    1.084    0.278    0.430    0.158
    reward1_eco2      0.590    0.340    1.733    0.083    0.590    0.218
    reward0_eco3     -0.183    0.409   -0.447    0.655   -0.183   -0.068
    reward1_eco3     -0.028    0.434   -0.065    0.948   -0.028   -0.010
    ADT_high_num      0.522    0.322    1.621    0.105    0.522    0.257
    TR_high_num      -0.063    0.297   -0.214    0.831   -0.063   -0.022
    reward1_c1_ADT    0.104    0.440    0.236    0.813    0.104    0.031
    reward0_c2_ADT   -0.258    0.456   -0.565    0.572   -0.258   -0.077
    reward1_c2_ADT   -0.492    0.409   -1.202    0.229   -0.492   -0.120
    reward0_c3_ADT    0.308    0.502    0.614    0.539    0.308    0.075
    reward1_c3_ADT   -0.180    0.507   -0.355    0.723   -0.180   -0.049
    reward1_ec1_TR    0.452    0.552    0.820    0.412    0.452    0.060
    reward0_ec2_TR    0.073    0.549    0.133    0.895    0.073    0.010
    reward1_ec2_TR    0.452    0.419    1.079    0.281    0.452    0.074
    reward0_ec3_TR    0.869    0.537    1.619    0.105    0.869    0.082
    reward1_ec3_TR   -0.575    0.572   -1.005    0.315   -0.575   -0.094
  EEF_composite ~                                                       
    IM_composite      0.638    0.070    9.154    0.000    0.638    0.580
  EEC_composite ~                                                       
    IM_composite      0.616    0.073    8.481    0.000    0.616    0.506

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.447    0.096    4.675    0.000    0.447    0.462

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.886    0.110    8.034    0.000    0.886    0.862
   .EEF_composite     0.825    0.124    6.670    0.000    0.825    0.664
   .EEC_composite     1.136    0.115    9.837    0.000    1.136    0.744

R-Square:
                   Estimate
    IM_composite      0.138
    EEF_composite     0.336
    EEC_composite     0.256

Only EEF as DV

Complete theoretical model
lavaan 0.6-19 ended normally after 94 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               140.264     159.618
  Degrees of freedom                                93          93
  P-value (Chi-square)                           0.001       0.000
  Scaling correction factor                                  0.879
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1168.896    1068.412
  Degrees of freedom                               117         117
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.094

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.930
  Tucker-Lewis Index (TLI)                       0.943       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.944
  Robust Tucker-Lewis Index (TLI)                            0.929

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1494.166   -1494.166
  Scaling correction factor                                  1.923
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1424.034   -1424.034
  Scaling correction factor                                  1.133
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3048.332    3048.332
  Bayesian (BIC)                              3149.311    3149.311
  Sample-size adjusted Bayesian (SABIC)       3054.249    3054.249

Root Mean Square Error of Approximation:

  RMSEA                                          0.049       0.058
  90 Percent confidence interval - lower         0.031       0.041
  90 Percent confidence interval - upper         0.065       0.074
  P-value H_0: RMSEA <= 0.050                    0.534       0.205
  P-value H_0: RMSEA >= 0.080                    0.000       0.010
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.040
  90 Percent confidence interval - upper                     0.068
  P-value H_0: Robust RMSEA <= 0.050                         0.300
  P-value H_0: Robust RMSEA >= 0.080                         0.001

Standardized Root Mean Square Residual:

  SRMR                                           0.043       0.043

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.221    0.000    1.128    0.933
    EEF3              0.962    0.055   17.480    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.946    0.813
    IM2               1.012    0.168    6.023    0.000    0.957    0.889
    IM3               1.006    0.185    5.445    0.000    0.951    0.818

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.135    0.404    0.335    0.738    0.143    0.052
    reward0_eco2      0.397    0.393    1.009    0.313    0.420    0.157
    reward1_eco2      0.600    0.338    1.773    0.076    0.635    0.237
    reward0_eco3     -0.207    0.395   -0.524    0.601   -0.219   -0.082
    reward1_eco3     -0.027    0.437   -0.062    0.950   -0.029   -0.011
    ADT_high_num      0.544    0.344    1.582    0.114    0.575    0.288
    TR_high_num      -0.082    0.283   -0.288    0.773   -0.086   -0.030
    reward1_c1_ADT    0.080    0.444    0.180    0.857    0.085    0.026
    reward0_c2_ADT   -0.275    0.452   -0.608    0.543   -0.290   -0.088
    reward1_c2_ADT   -0.506    0.422   -1.200    0.230   -0.536   -0.132
    reward0_c3_ADT    0.307    0.486    0.630    0.528    0.324    0.080
    reward1_c3_ADT   -0.192    0.512   -0.375    0.708   -0.203   -0.056
    reward1_ec1_TR    0.541    0.481    1.125    0.261    0.573    0.078
    reward0_ec2_TR    0.129    0.545    0.237    0.812    0.137    0.019
    reward1_ec2_TR    0.472    0.409    1.154    0.249    0.500    0.082
    reward0_ec3_TR    0.883    0.513    1.719    0.086    0.934    0.090
    reward1_ec3_TR   -0.577    0.603   -0.958    0.338   -0.611   -0.101
  EEF ~                                                                 
    IM                0.715    0.077    9.307    0.000    0.627    0.627

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.245    0.046    5.291    0.000    0.245    0.174
   .EEF2              0.188    0.047    4.037    0.000    0.188    0.129
   .EEF3              0.240    0.065    3.679    0.000    0.240    0.183
   .IM1               0.457    0.171    2.679    0.007    0.457    0.338
   .IM2               0.242    0.070    3.454    0.001    0.242    0.209
   .IM3               0.448    0.218    2.049    0.040    0.448    0.331
   .EEF               0.706    0.168    4.199    0.000    0.607    0.607
   .IM                0.745    0.181    4.123    0.000    0.833    0.833

Only EEC as DV

Complete theoretical model
lavaan 0.6-19 ended normally after 92 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               159.838     165.561
  Degrees of freedom                                93          93
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.965
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               980.770     868.817
  Degrees of freedom                               117         117
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.129

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.923       0.903
  Tucker-Lewis Index (TLI)                       0.903       0.879
                                                                  
  Robust Comparative Fit Index (CFI)                         0.917
  Robust Tucker-Lewis Index (TLI)                            0.896

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1694.172   -1694.172
  Scaling correction factor                                  1.702
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1614.253   -1614.253
  Scaling correction factor                                  1.145
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3448.345    3448.345
  Bayesian (BIC)                              3549.324    3549.324
  Sample-size adjusted Bayesian (SABIC)       3454.261    3454.261

Root Mean Square Error of Approximation:

  RMSEA                                          0.058       0.060
  90 Percent confidence interval - lower         0.042       0.045
  90 Percent confidence interval - upper         0.073       0.075
  P-value H_0: RMSEA <= 0.050                    0.189       0.129
  P-value H_0: RMSEA >= 0.080                    0.007       0.015
                                                                  
  Robust RMSEA                                               0.059
  90 Percent confidence interval - lower                     0.044
  90 Percent confidence interval - upper                     0.074
  P-value H_0: Robust RMSEA <= 0.050                         0.145
  P-value H_0: Robust RMSEA >= 0.080                         0.009

Standardized Root Mean Square Residual:

  SRMR                                           0.054       0.054

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.967    0.736
    EEC2              1.292    0.109   11.800    0.000    1.249    0.871
    EEC3              1.345    0.096   14.069    0.000    1.301    0.952
  IM =~                                                                 
    IM1               1.000                               0.922    0.793
    IM2               1.049    0.162    6.484    0.000    0.968    0.899
    IM3               1.046    0.172    6.095    0.000    0.965    0.830

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.137    0.387    0.355    0.723    0.149    0.054
    reward0_eco2      0.400    0.384    1.044    0.297    0.434    0.162
    reward1_eco2      0.582    0.334    1.742    0.081    0.631    0.236
    reward0_eco3     -0.184    0.389   -0.473    0.636   -0.199   -0.074
    reward1_eco3     -0.033    0.427   -0.077    0.938   -0.036   -0.013
    ADT_high_num      0.483    0.326    1.483    0.138    0.524    0.262
    TR_high_num      -0.064    0.275   -0.233    0.816   -0.069   -0.024
    reward1_c1_ADT    0.098    0.429    0.229    0.819    0.107    0.032
    reward0_c2_ADT   -0.224    0.437   -0.514    0.607   -0.243   -0.074
    reward1_c2_ADT   -0.445    0.405   -1.098    0.272   -0.482   -0.119
    reward0_c3_ADT    0.322    0.473    0.680    0.497    0.349    0.086
    reward1_c3_ADT   -0.127    0.503   -0.253    0.800   -0.138   -0.038
    reward1_ec1_TR    0.501    0.445    1.126    0.260    0.543    0.074
    reward0_ec2_TR    0.063    0.525    0.121    0.904    0.069    0.009
    reward1_ec2_TR    0.446    0.388    1.149    0.250    0.484    0.080
    reward0_ec3_TR    0.802    0.501    1.599    0.110    0.869    0.084
    reward1_ec3_TR   -0.654    0.594   -1.102    0.271   -0.709   -0.117
  EEC ~                                                                 
    IM                0.507    0.082    6.207    0.000    0.483    0.483

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.793    0.092    8.618    0.000    0.793    0.459
   .EEC2              0.497    0.114    4.362    0.000    0.497    0.241
   .EEC3              0.174    0.069    2.527    0.011    0.174    0.093
   .IM1               0.501    0.164    3.053    0.002    0.501    0.370
   .IM2               0.221    0.055    4.057    0.000    0.221    0.191
   .IM3               0.421    0.194    2.166    0.030    0.421    0.311
   .EEC               0.717    0.115    6.220    0.000    0.767    0.767
   .IM                0.713    0.175    4.065    0.000    0.838    0.838

With moderators as latent variables

Nested modelling

Mediation - doesnt work for Quarto

No mediation vs. mediation
Full vs. partial mediation
Entire model with full vs. partial mediation

Moderation

mediation vs. moderation
     aic      bic     srmr    rmsea      cfi      tli 
1772.686 1809.712    0.024    0.000    1.000    1.024 
     aic      bic     srmr    rmsea      cfi      tli 
1776.784 1854.202    0.042    0.056    0.905    0.849