library("gtsummary")
library(gtsummary)
datasets::beaver2
str(beaver2)
## 'data.frame': 100 obs. of 4 variables:
## $ day : num 307 307 307 307 307 307 307 307 307 307 ...
## $ time : num 930 940 950 1000 1010 1020 1030 1040 1050 1100 ...
## $ temp : num 36.6 36.7 36.9 37.1 37.2 ...
## $ activ: num 0 0 0 0 0 0 0 0 0 0 ...
str(beaver2)
## 'data.frame': 100 obs. of 4 variables:
## $ day : num 307 307 307 307 307 307 307 307 307 307 ...
## $ time : num 930 940 950 1000 1010 1020 1030 1040 1050 1100 ...
## $ temp : num 36.6 36.7 36.9 37.1 37.2 ...
## $ activ: num 0 0 0 0 0 0 0 0 0 0 ...
# Create a cross table (contingency table)
# For example, cross tabulate 'day' and 'activity'
# Display the cross table
plot(cars)
#Interpretation The graph for’dataset_bearver2’ illustrates the relationship between ‘speed’ and ‘dist’. From the graph, we observe that as the speed increases, the distance (‘dist’) also tends to increase. The data points show a positive correlation, indicating that higher speeds are generally associated with longer stopping distances. The spread of points suggests variability, but the overall trend is upward, implying that speed is a significant factor influencing the distance in this dataset.