# Load Packages
library(tidyverse)
library(tidyquant)
Ra <- c("MSFT", "NKE", "WMT") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 135 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 MSFT 2022-01-31 -0.0710
## 2 MSFT 2022-02-28 -0.0372
## 3 MSFT 2022-03-31 0.0319
## 4 MSFT 2022-04-29 -0.0999
## 5 MSFT 2022-05-31 -0.0181
## 6 MSFT 2022-06-30 -0.0553
## 7 MSFT 2022-07-29 0.0931
## 8 MSFT 2022-08-31 -0.0667
## 9 MSFT 2022-09-30 -0.109
## 10 MSFT 2022-10-31 -0.00331
## # ℹ 125 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 45 × 3
## # Groups: symbol [1]
## symbol date Rb
## <chr> <date> <dbl>
## 1 ^IXIC 2022-01-31 -0.101
## 2 ^IXIC 2022-02-28 -0.0343
## 3 ^IXIC 2022-03-31 0.0341
## 4 ^IXIC 2022-04-29 -0.133
## 5 ^IXIC 2022-05-31 -0.0205
## 6 ^IXIC 2022-06-30 -0.0871
## 7 ^IXIC 2022-07-29 0.123
## 8 ^IXIC 2022-08-31 -0.0464
## 9 ^IXIC 2022-09-30 -0.105
## 10 ^IXIC 2022-10-31 0.0390
## # ℹ 35 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 135 × 5
## symbol.x date Ra symbol.y Rb
## <chr> <date> <dbl> <chr> <dbl>
## 1 MSFT 2022-01-31 -0.0710 ^IXIC -0.101
## 2 MSFT 2022-02-28 -0.0372 ^IXIC -0.0343
## 3 MSFT 2022-03-31 0.0319 ^IXIC 0.0341
## 4 MSFT 2022-04-29 -0.0999 ^IXIC -0.133
## 5 MSFT 2022-05-31 -0.0181 ^IXIC -0.0205
## 6 MSFT 2022-06-30 -0.0553 ^IXIC -0.0871
## 7 MSFT 2022-07-29 0.0931 ^IXIC 0.123
## 8 MSFT 2022-08-31 -0.0667 ^IXIC -0.0464
## 9 MSFT 2022-09-30 -0.109 ^IXIC -0.105
## 10 MSFT 2022-10-31 -0.00331 ^IXIC 0.0390
## # ℹ 125 more rows
RaRb_skewness <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skewness
## # A tibble: 1 × 1
## skewness.1
## <dbl>
## 1 -0.344
None of them are positively skewed