AI manipulation study

Author

Marie Lasrado & Seidali Kurtmollaiev


Data preparation

Import

Sample size

$all
[1] 126

Data Quality

Manipulation and bot

Manipulation flag

   
    FALSE TRUE
  1    62    5
  2    58    1

Bot flag


FALSE  TRUE 
  124     2 

Attention

Duration

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.550   2.921   3.967   5.049   5.583  45.017 

Outliers defined as 3 std. deviations below or above the mean
Outliers on completion time

FALSE  TRUE 
  125     1 

On scales

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.5149  1.0597  1.1645  1.2190  1.3092  2.2344 
Flagged outliers based on scales

FALSE  TRUE 
  123     3 

Removing bad participants

Exclude participants

$all
[1] 11
cond.reward_flag outliers_completion bot_flag outliers_scales n
TRUE FALSE FALSE FALSE 5
TRUE FALSE TRUE FALSE 1
FALSE FALSE FALSE TRUE 3
FALSE FALSE TRUE FALSE 1
FALSE TRUE FALSE FALSE 1

Descriptive on good participants

Conditions

Group statistics

# A tibble: 2 × 6
  cond.reward     n mean_EEF sd_EEF mean_EEC sd_EEC
  <chr>       <int>    <dbl>  <dbl>    <dbl>  <dbl>
1 AI             56     5.64  0.989     4.88   1.23
2 control        59     5.82  0.641     4.93   1.11

Ease and feedback

   vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 115 4.36 0.62    4.5    4.42 0.74   2   5     3 -0.94     0.86 0.06

Scales

Descriptive stats on scales

 all good 
 126  115 
     Variable vars   n     mean        sd median  trimmed    mad min max range
IM1       IM1    1 115 5.443478 1.1934860      5 5.569892 1.4826   1   7     6
IM2       IM2    2 115 5.852174 1.2157120      6 6.043011 1.4826   1   7     6
IM3       IM3    3 115 5.643478 1.2296862      6 5.827957 1.4826   1   7     6
EEF1     EEF1    4 115 5.591304 0.9070451      6 5.612903 1.4826   2   7     5
EEF2     EEF2    5 115 5.773913 1.0350089      6 5.870968 1.4826   2   7     5
EEF3     EEF3    6 115 5.843478 0.9513730      6 5.924731 1.4826   3   7     4
EEC1     EEC1    7 115 4.686957 1.2591087      5 4.731183 1.4826   1   7     6
EEC2     EEC2    8 115 5.000000 1.3311385      5 5.075269 1.4826   2   7     5
EEC3     EEC3    9 115 5.034783 1.2837065      5 5.150538 1.4826   1   7     6
ADT1     ADT1   10 115 5.495652 1.5007245      6 5.720430 1.4826   1   7     6
ADT2     ADT2   11 115 5.452174 1.5231747      6 5.666667 1.4826   1   7     6
ADT3     ADT3   12 115 5.391304 1.5766701      6 5.602151 1.4826   1   7     6
           skew     kurtosis         se
IM1  -1.0489429  1.751720098 0.11129314
IM2  -1.6643802  3.423150713 0.11336573
IM3  -1.3534400  2.160446783 0.11466883
EEF1 -0.6543198  1.573326278 0.08458239
EEF2 -0.7202855  0.600751369 0.09651507
EEF3 -0.5968928 -0.009295716 0.08871599
EEC1 -0.3430226 -0.308180058 0.11741249
EEC2 -0.5972380 -0.280302443 0.12412931
EEC3 -0.8287281  0.261966603 0.11970625
ADT1 -1.2111939  0.937801485 0.13994328
ADT2 -1.1058594  0.611552905 0.14203677
ADT3 -1.0129413  0.102156242 0.14702525

Assumptions

Non-normality test across all scales

$IM1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.85797, p-value = 4.083e-09


$IM2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.77939, p-value = 7.426e-12


$IM3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.8243, p-value = 2.18e-10


$EEF1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.85186, p-value = 2.326e-09


$EEF2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.86864, p-value = 1.133e-08


$EEF3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.86777, p-value = 1.04e-08


$EEC1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93477, p-value = 2.842e-05


$EEC2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.90513, p-value = 5.784e-07


$EEC3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89004, p-value = 1.035e-07


$ADT1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.83474, p-value = 5.185e-10


$ADT2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.84743, p-value = 1.561e-09


$ADT3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.84495, p-value = 1.254e-09

Non-normality test on EEF composite


    Shapiro-Wilk normality test

data:  data_filtered$EEF_composite
W = 0.94903, p-value = 0.0002562

Non-normality test on EEC composite


    Shapiro-Wilk normality test

data:  data_filtered$EEC_composite
W = 0.94529, p-value = 0.0001403

Non-normality test on DV per condition

EEF composite

# A tibble: 2 × 3
  cond.reward     n shapiro_p
  <chr>       <int>     <dbl>
1 AI             56   0.00525
2 control        59   0.00482

EEC composite

# A tibble: 2 × 3
  cond.reward     n shapiro_p
  <chr>       <int>     <dbl>
1 AI             56 0.0000132
2 control        59 0.321    

Non-normality test on IM composite


    Shapiro-Wilk normality test

data:  data_filtered$IM_composite
W = 0.85765, p-value = 3.962e-09

Non-normality test on IM per condition

# A tibble: 2 × 3
  cond.reward     n   shapiro_p
  <chr>       <int>       <dbl>
1 AI             56 0.000000366
2 control        59 0.0000415  

Factor analyses

KMO

Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = efa_data_good)
Overall MSA =  0.84
MSA for each item = 
 IM1  IM2  IM3 EEF1 EEF2 EEF3 EEC1 EEC2 EEC3 ADT1 ADT2 ADT3 
0.88 0.84 0.89 0.84 0.84 0.90 0.86 0.83 0.85 0.77 0.81 0.83 

# A tibble: 8 × 6
  cond.reward Measure        Mean Median    SD     N
  <chr>       <chr>         <dbl>  <dbl> <dbl> <int>
1 AI          ADT_composite  5.32   6    1.63     56
2 AI          EEC_composite  4.88   5.33 1.23     56
3 AI          EEF_composite  5.64   5.83 0.989    56
4 AI          IM_composite   5.58   5.67 1.17     56
5 control     ADT_composite  5.57   6    1.33     59
6 control     EEC_composite  4.93   5    1.11     59
7 control     EEF_composite  5.82   5.67 0.641    59
8 control     IM_composite   5.71   6    1.13     59

EFA

Parallel analysis suggests that the number of factors =  4  and the number of components =  NA 
threshold=0.40

Loadings:
     MR2   MR1   MR4   MR3  
IM1     NA 0.831    NA    NA
IM2     NA 0.867    NA    NA
IM3     NA 0.831    NA    NA
EEF1    NA    NA    NA 0.840
EEF2    NA    NA    NA 0.720
EEF3    NA    NA    NA 0.595
EEC1    NA    NA 0.763    NA
EEC2    NA    NA 0.745    NA
EEC3    NA    NA 0.787    NA
ADT1 0.956    NA    NA    NA
ADT2 0.922    NA    NA    NA
ADT3 0.890    NA    NA    NA

               MR2 MR1 MR4 MR3
SS loadings     NA  NA  NA  NA
Proportion Var  NA  NA  NA  NA
Cumulative Var  NA  NA  NA  NA
Factor Analysis using method =  minres
Call: fa(r = cor(efa_data_good, use = "pairwise.complete.obs"), nfactors = 4, 
    rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix
      MR2  MR1  MR4  MR3   h2    u2 com
IM1  0.16 0.83 0.30 0.21 0.85 0.149 1.5
IM2  0.11 0.87 0.23 0.19 0.85 0.147 1.3
IM3  0.13 0.83 0.27 0.22 0.83 0.170 1.4
EEF1 0.15 0.19 0.14 0.84 0.78 0.220 1.2
EEF2 0.17 0.14 0.18 0.72 0.60 0.402 1.3
EEF3 0.14 0.29 0.30 0.59 0.55 0.455 2.1
EEC1 0.12 0.30 0.76 0.07 0.69 0.310 1.4
EEC2 0.17 0.29 0.74 0.29 0.75 0.248 1.7
EEC3 0.11 0.21 0.79 0.32 0.78 0.222 1.5
ADT1 0.96 0.09 0.12 0.11 0.95 0.051 1.1
ADT2 0.92 0.15 0.10 0.17 0.91 0.088 1.1
ADT3 0.89 0.14 0.15 0.18 0.87 0.133 1.2

                       MR2  MR1  MR4  MR3
SS loadings           2.74 2.53 2.16 1.98
Proportion Var        0.23 0.21 0.18 0.16
Cumulative Var        0.23 0.44 0.62 0.78
Proportion Explained  0.29 0.27 0.23 0.21
Cumulative Proportion 0.29 0.56 0.79 1.00

Mean item complexity =  1.4
Test of the hypothesis that 4 factors are sufficient.

df null model =  66  with the objective function =  10.79
df of  the model are 24  and the objective function was  0.3 

The root mean square of the residuals (RMSR) is  0.01 
The df corrected root mean square of the residuals is  0.02 

Fit based upon off diagonal values = 1
Measures of factor score adequacy             
                                                   MR2  MR1  MR4  MR3
Correlation of (regression) scores with factors   0.98 0.95 0.91 0.90
Multiple R square of scores with factors          0.97 0.90 0.83 0.81
Minimum correlation of possible factor scores     0.93 0.80 0.66 0.63

CFA

lavaan 0.6-19 ended normally after 44 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                68.574      60.496
  Degrees of freedom                                48          48
  P-value (Chi-square)                           0.027       0.106
  Scaling correction factor                                  1.134
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1240.604    1042.507
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.190

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.982       0.987
  Tucker-Lewis Index (TLI)                       0.976       0.982
                                                                  
  Robust Comparative Fit Index (CFI)                         0.988
  Robust Tucker-Lewis Index (TLI)                            0.983

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1655.229   -1655.229
  Scaling correction factor                                  1.399
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1620.942   -1620.942
  Scaling correction factor                                  1.235
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3370.457    3370.457
  Bayesian (BIC)                              3452.805    3452.805
  Sample-size adjusted Bayesian (SABIC)       3357.981    3357.981

Root Mean Square Error of Approximation:

  RMSEA                                          0.061       0.048
  90 Percent confidence interval - lower         0.021       0.000
  90 Percent confidence interval - upper         0.092       0.079
  P-value H_0: RMSEA <= 0.050                    0.276       0.521
  P-value H_0: RMSEA >= 0.080                    0.169       0.047
                                                                  
  Robust RMSEA                                               0.051
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.087
  P-value H_0: Robust RMSEA <= 0.050                         0.464
  P-value H_0: Robust RMSEA >= 0.080                         0.096

Standardized Root Mean Square Residual:

  SRMR                                           0.046       0.046

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC =~                                                                
    EEC1              1.000                               1.000    1.000
    EEC2              1.196    0.107   11.193    0.000    0.987    1.406
    EEC3              1.098    0.099   11.031    0.000    0.903    1.293
  EEF =~                                                                
    EEF1              1.000                               1.000    1.000
    EEF2              1.059    0.153    6.908    0.000    0.759    1.360
    EEF3              0.927    0.156    5.959    0.000    0.622    1.231
  ADT =~                                                                
    ADT1              1.000                               1.000    1.000
    ADT2              1.001    0.041   24.537    0.000    0.921    1.081
    ADT3              1.011    0.049   20.766    0.000    0.915    1.106
  IM =~                                                                 
    IM1               1.000                               1.000    1.000
    IM2               1.005    0.061   16.507    0.000    0.886    1.124
    IM3               1.011    0.060   16.914    0.000    0.894    1.129
   Std.lv  Std.all
                  
    0.991    0.791
    1.186    0.895
    1.088    0.851
                  
    0.757    0.839
    0.802    0.779
    0.702    0.741
                  
    1.447    0.968
    1.448    0.955
    1.463    0.932
                  
    1.102    0.927
    1.107    0.915
    1.114    0.910

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC ~~                                                                
    EEF               0.448    0.094    4.784    0.000    0.264    0.631
    ADT               0.510    0.169    3.014    0.003    0.178    0.842
    IM                0.692    0.185    3.745    0.000    0.330    1.054
  EEF ~~                                                                
    ADT               0.426    0.121    3.531    0.000    0.189    0.662
    IM                0.449    0.099    4.521    0.000    0.255    0.644
  ADT ~~                                                                
    IM                0.523    0.185    2.826    0.005    0.160    0.886
   Std.lv  Std.all
                  
    0.596    0.596
    0.356    0.356
    0.633    0.633
                  
    0.388    0.388
    0.538    0.538
                  
    0.328    0.328

Variances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
   .EEC1              0.589    0.100    5.905    0.000    0.393    0.784
   .EEC2              0.350    0.101    3.462    0.001    0.152    0.548
   .EEC3              0.450    0.109    4.107    0.000    0.235    0.664
   .EEF1              0.242    0.082    2.959    0.003    0.082    0.402
   .EEF2              0.418    0.092    4.544    0.000    0.238    0.598
   .EEF3              0.405    0.104    3.880    0.000    0.200    0.609
   .ADT1              0.139    0.060    2.304    0.021    0.021    0.256
   .ADT2              0.203    0.055    3.690    0.000    0.095    0.311
   .ADT3              0.324    0.084    3.866    0.000    0.160    0.489
   .IM1               0.198    0.045    4.417    0.000    0.110    0.285
   .IM2               0.239    0.059    4.082    0.000    0.124    0.354
   .IM3               0.257    0.075    3.431    0.001    0.110    0.404
    EEC               0.983    0.215    4.576    0.000    0.562    1.404
    EEF               0.574    0.155    3.712    0.000    0.271    0.877
    ADT               2.094    0.364    5.745    0.000    1.380    2.808
    IM                1.214    0.262    4.644    0.000    0.702    1.727
   Std.lv  Std.all
    0.589    0.375
    0.350    0.199
    0.450    0.275
    0.242    0.297
    0.418    0.394
    0.405    0.451
    0.139    0.062
    0.203    0.088
    0.324    0.132
    0.198    0.140
    0.239    0.163
    0.257    0.171
    1.000    1.000
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.625
    EEC2              0.801
    EEC3              0.725
    EEF1              0.703
    EEF2              0.606
    EEF3              0.549
    ADT1              0.938
    ADT2              0.912
    ADT3              0.868
    IM1               0.860
    IM2               0.837
    IM3               0.829
Cronbach Alpha
  EEC   EEF   ADT    IM 
0.884 0.823 0.966 0.941 
Omega
  EEC   EEF   ADT    IM 
0.883 0.832 0.967 0.941 
AVE
  EEC   EEF   ADT    IM 
0.720 0.616 0.905 0.842 
$type
[1] "cor.bentler"

$cov
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.001  0.000                                                        
EEC3  0.017 -0.007  0.000                                                 
EEF1 -0.163  0.003 -0.007  0.000                                          
EEF2 -0.099 -0.008  0.007  0.032  0.000                                   
EEF3 -0.003  0.076  0.174 -0.015 -0.034  0.000                            
ADT1 -0.036  0.012 -0.034 -0.043 -0.034 -0.009  0.000                     
ADT2 -0.034  0.042 -0.041  0.014  0.027  0.023  0.001  0.000              
ADT3  0.039  0.021  0.036  0.012  0.074  0.042  0.001 -0.003  0.000       
IM1   0.037  0.049 -0.018 -0.015 -0.044  0.101 -0.012  0.042  0.052  0.000
IM2   0.016 -0.041 -0.057 -0.039 -0.062  0.077 -0.063  0.006  0.016  0.001
IM3   0.021  0.015 -0.022 -0.024 -0.046  0.136 -0.022  0.017  0.029 -0.006
        IM2    IM3
EEC1              
EEC2              
EEC3              
EEF1              
EEF2              
EEF3              
ADT1              
ADT2              
ADT3              
IM1               
IM2   0.000       
IM3   0.006  0.000

$cov.z
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.030  0.000                                                        
EEC3  0.320 -0.153  0.000                                                 
EEF1 -2.639  0.069 -0.126  0.000                                          
EEF2 -1.841 -0.173  0.119  0.716  0.000                                   
EEF3 -0.030  0.824  2.321 -0.405 -0.639  0.000                            
ADT1 -0.652  0.333 -0.647 -1.001 -0.607 -0.120  0.000                     
ADT2 -0.569  0.948 -0.700  0.362  0.480  0.290  0.030  0.000              
ADT3  0.766  0.445  0.742  0.216  1.541  0.584  0.053 -0.176  0.000       
IM1   0.628  1.005 -0.292 -0.231 -0.840  1.115 -0.269  1.041  0.971  0.000
IM2   0.286 -0.722 -0.909 -0.581 -0.977  0.810 -1.157  0.095  0.320  0.020
IM3   0.343  0.278 -0.330 -0.379 -0.778  1.758 -0.499  0.321  0.517 -0.112
        IM2    IM3
EEC1              
EEC2              
EEC3              
EEF1              
EEF2              
EEF3              
ADT1              
ADT2              
ADT3              
IM1               
IM2   0.000       
IM3   0.099  0.000

$summary
                           cov
srmr                     0.046
srmr.se                  0.015
srmr.exactfit.z          0.000
srmr.exactfit.pvalue     0.500
usrmr                    0.000
usrmr.se                 0.028
usrmr.ci.lower          -0.045
usrmr.ci.upper           0.045
usrmr.closefit.h0.value  0.050
usrmr.closefit.z        -1.812
usrmr.closefit.pvalue    0.965

CFA with correlation matrix

lavaan 0.6-19 ended normally after 44 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                68.574      60.496
  Degrees of freedom                                48          48
  P-value (Chi-square)                           0.027       0.106
  Scaling correction factor                                  1.134
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1240.604    1042.507
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.190

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.982       0.987
  Tucker-Lewis Index (TLI)                       0.976       0.982
                                                                  
  Robust Comparative Fit Index (CFI)                         0.988
  Robust Tucker-Lewis Index (TLI)                            0.983

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1655.229   -1655.229
  Scaling correction factor                                  1.399
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1620.942   -1620.942
  Scaling correction factor                                  1.235
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3370.457    3370.457
  Bayesian (BIC)                              3452.805    3452.805
  Sample-size adjusted Bayesian (SABIC)       3357.981    3357.981

Root Mean Square Error of Approximation:

  RMSEA                                          0.061       0.048
  90 Percent confidence interval - lower         0.021       0.000
  90 Percent confidence interval - upper         0.092       0.079
  P-value H_0: RMSEA <= 0.050                    0.276       0.521
  P-value H_0: RMSEA >= 0.080                    0.169       0.047
                                                                  
  Robust RMSEA                                               0.051
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.087
  P-value H_0: Robust RMSEA <= 0.050                         0.464
  P-value H_0: Robust RMSEA >= 0.080                         0.096

Standardized Root Mean Square Residual:

  SRMR                                           0.046       0.046

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.991    0.791
    EEC2              1.196    0.107   11.193    0.000    1.186    0.895
    EEC3              1.098    0.099   11.031    0.000    1.088    0.851
  EEF =~                                                                
    EEF1              1.000                               0.757    0.839
    EEF2              1.059    0.153    6.908    0.000    0.802    0.779
    EEF3              0.927    0.156    5.959    0.000    0.702    0.741
  ADT =~                                                                
    ADT1              1.000                               1.447    0.968
    ADT2              1.001    0.041   24.537    0.000    1.448    0.955
    ADT3              1.011    0.049   20.766    0.000    1.463    0.932
  IM =~                                                                 
    IM1               1.000                               1.102    0.927
    IM2               1.005    0.061   16.507    0.000    1.107    0.915
    IM3               1.011    0.060   16.914    0.000    1.114    0.910

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
    EEF               0.448    0.094    4.784    0.000    0.596    0.596
    ADT               0.510    0.169    3.014    0.003    0.356    0.356
    IM                0.692    0.185    3.745    0.000    0.633    0.633
  EEF ~~                                                                
    ADT               0.426    0.121    3.531    0.000    0.388    0.388
    IM                0.449    0.099    4.521    0.000    0.538    0.538
  ADT ~~                                                                
    IM                0.523    0.185    2.826    0.005    0.328    0.328

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.589    0.100    5.905    0.000    0.589    0.375
   .EEC2              0.350    0.101    3.462    0.001    0.350    0.199
   .EEC3              0.450    0.109    4.107    0.000    0.450    0.275
   .EEF1              0.242    0.082    2.959    0.003    0.242    0.297
   .EEF2              0.418    0.092    4.544    0.000    0.418    0.394
   .EEF3              0.405    0.104    3.880    0.000    0.405    0.451
   .ADT1              0.139    0.060    2.304    0.021    0.139    0.062
   .ADT2              0.203    0.055    3.690    0.000    0.203    0.088
   .ADT3              0.324    0.084    3.866    0.000    0.324    0.132
   .IM1               0.198    0.045    4.417    0.000    0.198    0.140
   .IM2               0.239    0.059    4.082    0.000    0.239    0.163
   .IM3               0.257    0.075    3.431    0.001    0.257    0.171
    EEC               0.983    0.215    4.576    0.000    1.000    1.000
    EEF               0.574    0.155    3.712    0.000    1.000    1.000
    ADT               2.094    0.364    5.745    0.000    1.000    1.000
    IM                1.214    0.262    4.644    0.000    1.000    1.000
Latent factor correlation matrix with p-values:
    IM             ADT            EEF        EEC       
IM  "1"            "0.33 (0.001)" "0.54 (0)" "0.63 (0)"
ADT "0.33 (0.001)" "1"            "0.39 (0)" "0.36 (0)"
EEF "0.54 (0)"     "0.39 (0)"     "1"        "0.6 (0)" 
EEC "0.63 (0)"     "0.36 (0)"     "0.6 (0)"  "1"       

Common method bias

Harman’s test

Factor Analysis using method =  minres
Call: fa(r = efa_data_good, nfactors = 1, rotate = "none")
Standardized loadings (pattern matrix) based upon correlation matrix
      MR1   h2   u2 com
IM1  0.78 0.60 0.40   1
IM2  0.72 0.52 0.48   1
IM3  0.75 0.57 0.43   1
EEF1 0.61 0.37 0.63   1
EEF2 0.57 0.32 0.68   1
EEF3 0.66 0.44 0.56   1
EEC1 0.63 0.40 0.60   1
EEC2 0.75 0.57 0.43   1
EEC3 0.70 0.50 0.50   1
ADT1 0.55 0.30 0.70   1
ADT2 0.59 0.34 0.66   1
ADT3 0.60 0.36 0.64   1

                MR1
SS loadings    5.29
Proportion Var 0.44

Mean item complexity =  1
Test of the hypothesis that 1 factor is sufficient.

df null model =  66  with the objective function =  10.79 with Chi Square =  1177.68
df of  the model are 54  and the objective function was  5.98 

The root mean square of the residuals (RMSR) is  0.17 
The df corrected root mean square of the residuals is  0.19 

The harmonic n.obs is  115 with the empirical chi square  462.35  with prob <  3.2e-66 
The total n.obs was  115  with Likelihood Chi Square =  649.18  with prob <  5.7e-103 

Tucker Lewis Index of factoring reliability =  0.341
RMSEA index =  0.309  and the 90 % confidence intervals are  0.29 0.333
BIC =  392.95
Fit based upon off diagonal values = 0.86
Measures of factor score adequacy             
                                                   MR1
Correlation of (regression) scores with factors   0.95
Multiple R square of scores with factors          0.91
Minimum correlation of possible factor scores     0.82

CFA with one factor

lavaan 0.6-19 ended normally after 44 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                68.574      60.496
  Degrees of freedom                                48          48
  P-value (Chi-square)                           0.027       0.106
  Scaling correction factor                                  1.134
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1240.604    1042.507
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.190

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.982       0.987
  Tucker-Lewis Index (TLI)                       0.976       0.982
                                                                  
  Robust Comparative Fit Index (CFI)                         0.988
  Robust Tucker-Lewis Index (TLI)                            0.983

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1655.229   -1655.229
  Scaling correction factor                                  1.399
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1620.942   -1620.942
  Scaling correction factor                                  1.235
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3370.457    3370.457
  Bayesian (BIC)                              3452.805    3452.805
  Sample-size adjusted Bayesian (SABIC)       3357.981    3357.981

Root Mean Square Error of Approximation:

  RMSEA                                          0.061       0.048
  90 Percent confidence interval - lower         0.021       0.000
  90 Percent confidence interval - upper         0.092       0.079
  P-value H_0: RMSEA <= 0.050                    0.276       0.521
  P-value H_0: RMSEA >= 0.080                    0.169       0.047
                                                                  
  Robust RMSEA                                               0.051
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.087
  P-value H_0: Robust RMSEA <= 0.050                         0.464
  P-value H_0: Robust RMSEA >= 0.080                         0.096

Standardized Root Mean Square Residual:

  SRMR                                           0.046       0.046

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.991    0.791
    EEC2              1.196    0.107   11.193    0.000    1.186    0.895
    EEC3              1.098    0.099   11.031    0.000    1.088    0.851
  EEF =~                                                                
    EEF1              1.000                               0.757    0.839
    EEF2              1.059    0.153    6.908    0.000    0.802    0.779
    EEF3              0.927    0.156    5.959    0.000    0.702    0.741
  ADT =~                                                                
    ADT1              1.000                               1.447    0.968
    ADT2              1.001    0.041   24.537    0.000    1.448    0.955
    ADT3              1.011    0.049   20.766    0.000    1.463    0.932
  IM =~                                                                 
    IM1               1.000                               1.102    0.927
    IM2               1.005    0.061   16.507    0.000    1.107    0.915
    IM3               1.011    0.060   16.914    0.000    1.114    0.910

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
    EEF               0.448    0.094    4.784    0.000    0.596    0.596
    ADT               0.510    0.169    3.014    0.003    0.356    0.356
    IM                0.692    0.185    3.745    0.000    0.633    0.633
  EEF ~~                                                                
    ADT               0.426    0.121    3.531    0.000    0.388    0.388
    IM                0.449    0.099    4.521    0.000    0.538    0.538
  ADT ~~                                                                
    IM                0.523    0.185    2.826    0.005    0.328    0.328

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.589    0.100    5.905    0.000    0.589    0.375
   .EEC2              0.350    0.101    3.462    0.001    0.350    0.199
   .EEC3              0.450    0.109    4.107    0.000    0.450    0.275
   .EEF1              0.242    0.082    2.959    0.003    0.242    0.297
   .EEF2              0.418    0.092    4.544    0.000    0.418    0.394
   .EEF3              0.405    0.104    3.880    0.000    0.405    0.451
   .ADT1              0.139    0.060    2.304    0.021    0.139    0.062
   .ADT2              0.203    0.055    3.690    0.000    0.203    0.088
   .ADT3              0.324    0.084    3.866    0.000    0.324    0.132
   .IM1               0.198    0.045    4.417    0.000    0.198    0.140
   .IM2               0.239    0.059    4.082    0.000    0.239    0.163
   .IM3               0.257    0.075    3.431    0.001    0.257    0.171
    EEC               0.983    0.215    4.576    0.000    1.000    1.000
    EEF               0.574    0.155    3.712    0.000    1.000    1.000
    ADT               2.094    0.364    5.745    0.000    1.000    1.000
    IM                1.214    0.262    4.644    0.000    1.000    1.000
      EEC   EEF   ADT    IM
EEC 1.000                  
EEF 0.596 1.000            
ADT 0.356 0.388 1.000      
IM  0.633 0.538 0.328 1.000
      EEC       EEF       ADT        IM 
0.9829447 0.5737160 2.0940521 1.2144506 
lavaan 0.6-19 did NOT end normally after 2107 iterations
** WARNING ** Estimates below are most likely unreliable

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        37

  Number of observations                           115


Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.000    0.000
    EEC2           3503.705       NA                      1.166    0.880
    EEC3           3287.294       NA                      1.094    0.856
  EEF =~                                                                
    EEF1              1.000                               0.885    0.980
    EEF2              0.865       NA                      0.765    0.743
    EEF3              0.784       NA                      0.694    0.733
  ADT =~                                                                
    ADT1              1.000                               1.464    0.980
    ADT2              0.988       NA                      1.446    0.954
    ADT3              0.999       NA                      1.463    0.932
  IM =~                                                                 
    IM1               1.000                               1.028    0.866
    IM2               1.083       NA                      1.114    0.920
    IM3               1.084       NA                      1.115    0.911
  CMF =~                                                                
    EEC1              1.000                               1.000    0.799
    EEF1             -0.181       NA                     -0.181   -0.201
    ADT1             -0.046       NA                     -0.046   -0.031
    IM1               0.101       NA                      0.101    0.085

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
    EEF               0.000       NA                      0.714    0.714
    ADT               0.000       NA                      0.375    0.375
    IM                0.000       NA                      0.603    0.603
    CMF               0.000       NA                      1.004    1.004
  EEF ~~                                                                
    ADT               0.519       NA                      0.401    0.401
    IM                0.520       NA                      0.571    0.571
    CMF               0.458       NA                      0.518    0.518
  ADT ~~                                                                
    IM                0.496       NA                      0.329    0.329
    CMF               0.510       NA                      0.348    0.348
  IM ~~                                                                 
    CMF               0.670       NA                      0.651    0.651

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    CMF               1.000                               1.000    1.000
   .EEC1              0.565       NA                      0.565    0.361
   .EEC2              0.394       NA                      0.394    0.225
   .EEC3              0.434       NA                      0.434    0.266
   .EEF1              0.166       NA                      0.166    0.203
   .EEF2              0.475       NA                      0.475    0.448
   .EEF3              0.415       NA                      0.415    0.463
   .ADT1              0.133       NA                      0.133    0.059
   .ADT2              0.208       NA                      0.208    0.091
   .ADT3              0.324       NA                      0.324    0.131
   .IM1               0.207       NA                      0.207    0.147
   .IM2               0.224       NA                      0.224    0.153
   .IM3               0.255       NA                      0.255    0.170
    EEC               0.000       NA                      1.000    1.000
    EEF               0.783       NA                      1.000    1.000
    ADT               2.144       NA                      1.000    1.000
    IM                1.057       NA                      1.000    1.000

R-Square:
                   Estimate
    EEC1              0.639
    EEC2              0.775
    EEC3              0.734
    EEF1              0.797
    EEF2              0.552
    EEF3              0.537
    ADT1              0.941
    ADT2              0.909
    ADT3              0.869
    IM1               0.853
    IM2               0.847
    IM3               0.830
      EEC   EEF   ADT    IM   CMF
EEC 1.000                        
EEF 0.714 1.000                  
ADT 0.375 0.401 1.000            
IM  0.603 0.571 0.329 1.000      
CMF 1.004 0.518 0.348 0.651 1.000
         EEC          EEF          ADT           IM          CMF 
1.106582e-07 7.832044e-01 2.143783e+00 1.057486e+00 1.000000e+00 

SEM

SEM with two non-connected DVs

Plain - both DVs

lavaan 0.6-19 ended normally after 31 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        24

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                39.268      36.279
  Degrees of freedom                                30          30
  P-value (Chi-square)                           0.120       0.199
  Scaling correction factor                                  1.082
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               762.973     680.484
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.121

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.987       0.990
  Tucker-Lewis Index (TLI)                       0.981       0.985
                                                                  
  Robust Comparative Fit Index (CFI)                         0.990
  Robust Tucker-Lewis Index (TLI)                            0.986

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1243.927   -1243.927
  Scaling correction factor                                  1.329
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1224.293   -1224.293
  Scaling correction factor                                  1.192
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                2535.854    2535.854
  Bayesian (BIC)                              2601.732    2601.732
  Sample-size adjusted Bayesian (SABIC)       2525.873    2525.873

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.043
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.093       0.085
  P-value H_0: RMSEA <= 0.050                    0.442       0.570
  P-value H_0: RMSEA >= 0.080                    0.143       0.077
                                                                  
  Robust RMSEA                                               0.044
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.090
  P-value H_0: Robust RMSEA <= 0.050                         0.538
  P-value H_0: Robust RMSEA >= 0.080                         0.109

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               0.759    0.841
    EEF2              1.058    0.157    6.750    0.000    0.803    0.780
    EEF3              0.921    0.155    5.953    0.000    0.699    0.738
  EEC =~                                                                
    EEC1              1.000                               0.991    0.791
    EEC2              1.194    0.107   11.143    0.000    1.184    0.893
    EEC3              1.101    0.099   11.071    0.000    1.091    0.854
  IM =~                                                                 
    IM1               1.000                               1.102    0.927
    IM2               1.006    0.061   16.564    0.000    1.108    0.915
    IM3               1.012    0.060   16.976    0.000    1.115    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.136    0.212   -0.643    0.521   -0.124   -0.062
  EEF ~                                                                 
    IM                0.366    0.061    6.010    0.000    0.531    0.531
    reward_2         -0.143    0.143   -1.000    0.317   -0.188   -0.094
  EEC ~                                                                 
    IM                0.396    0.100    3.956    0.000    0.440    0.440
    reward_2          0.105    0.149    0.707    0.480    0.106    0.053
    EEF               0.478    0.151    3.153    0.002    0.366    0.366

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.239    0.081    2.933    0.003    0.239    0.293
   .EEF2              0.417    0.093    4.476    0.000    0.417    0.392
   .EEF3              0.408    0.108    3.777    0.000    0.408    0.455
   .EEC1              0.589    0.100    5.909    0.000    0.589    0.375
   .EEC2              0.355    0.101    3.525    0.000    0.355    0.202
   .EEC3              0.443    0.108    4.110    0.000    0.443    0.271
   .IM1               0.199    0.044    4.475    0.000    0.199    0.141
   .IM2               0.238    0.057    4.138    0.000    0.238    0.162
   .IM3               0.257    0.074    3.453    0.001    0.257    0.171
   .EEF               0.405    0.133    3.044    0.002    0.703    0.703
   .EEC               0.496    0.141    3.523    0.000    0.505    0.505
   .IM                1.209    0.258    4.689    0.000    0.996    0.996

R-Square:
                   Estimate
    EEF1              0.707
    EEF2              0.608
    EEF3              0.545
    EEC1              0.625
    EEC2              0.798
    EEC3              0.729
    IM1               0.859
    IM2               0.838
    IM3               0.829
    EEF               0.297
    EEC               0.495
    IM                0.004

Plain - only EEF

lavaan 0.6-19 ended normally after 27 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        15

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                11.353       9.792
  Degrees of freedom                                12          12
  P-value (Chi-square)                           0.499       0.634
  Scaling correction factor                                  1.159
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               484.153     421.834
  Degrees of freedom                                21          21
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.148

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.002       1.010
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.010

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -793.240    -793.240
  Scaling correction factor                                  1.412
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -787.564    -787.564
  Scaling correction factor                                  1.300
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1616.480    1616.480
  Bayesian (BIC)                              1657.654    1657.654
  Sample-size adjusted Bayesian (SABIC)       1610.242    1610.242

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.091       0.075
  P-value H_0: RMSEA <= 0.050                    0.726       0.845
  P-value H_0: RMSEA >= 0.080                    0.090       0.036
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.086
  P-value H_0: Robust RMSEA <= 0.050                         0.803
  P-value H_0: Robust RMSEA >= 0.080                         0.067

Standardized Root Mean Square Residual:

  SRMR                                           0.047       0.047

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               0.772    0.855
    EEF2              1.040    0.167    6.236    0.000    0.804    0.780
    EEF3              0.886    0.151    5.884    0.000    0.684    0.722
  IM =~                                                                 
    IM1               1.000                               1.096    0.923
    IM2               1.015    0.059   17.090    0.000    1.113    0.920
    IM3               1.017    0.059   17.215    0.000    1.115    0.911

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.135    0.211   -0.638    0.523   -0.123   -0.062
  EEF ~                                                                 
    IM                0.369    0.063    5.871    0.000    0.524    0.524
    reward_2         -0.149    0.144   -1.032    0.302   -0.192   -0.096

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.219    0.083    2.653    0.008    0.219    0.268
   .EEF2              0.416    0.090    4.644    0.000    0.416    0.392
   .EEF3              0.429    0.109    3.933    0.000    0.429    0.478
   .IM1               0.210    0.044    4.819    0.000    0.210    0.149
   .IM2               0.226    0.057    3.947    0.000    0.226    0.154
   .IM3               0.256    0.073    3.519    0.000    0.256    0.171
   .EEF               0.423    0.137    3.088    0.002    0.710    0.710
   .IM                1.198    0.258    4.636    0.000    0.996    0.996

R-Square:
                   Estimate
    EEF1              0.732
    EEF2              0.608
    EEF3              0.522
    IM1               0.851
    IM2               0.846
    IM3               0.829
    EEF               0.290
    IM                0.004

SEM - only EEC

lavaan 0.6-19 ended normally after 28 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        15

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 8.181       8.038
  Degrees of freedom                                12          12
  P-value (Chi-square)                           0.771       0.782
  Scaling correction factor                                  1.018
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               557.292     530.997
  Degrees of freedom                                21          21
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.050

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.012       1.014
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.013

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -856.192    -856.192
  Scaling correction factor                                  1.303
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -852.102    -852.102
  Scaling correction factor                                  1.176
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1742.385    1742.385
  Bayesian (BIC)                              1783.559    1783.559
  Sample-size adjusted Bayesian (SABIC)       1736.146    1736.146

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.066       0.064
  P-value H_0: RMSEA <= 0.050                    0.903       0.911
  P-value H_0: RMSEA >= 0.080                    0.023       0.020
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.065
  P-value H_0: Robust RMSEA <= 0.050                         0.907
  P-value H_0: Robust RMSEA >= 0.080                         0.022

Standardized Root Mean Square Residual:

  SRMR                                           0.019       0.019

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.011    0.806
    EEC2              1.164    0.100   11.649    0.000    1.177    0.888
    EEC3              1.070    0.098   10.966    0.000    1.082    0.846
  IM =~                                                                 
    IM1               1.000                               1.102    0.927
    IM2               1.006    0.062   16.240    0.000    1.108    0.916
    IM3               1.011    0.060   16.848    0.000    1.114    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.137    0.212   -0.643    0.520   -0.124   -0.062
  EEC ~                                                                 
    IM                0.583    0.083    6.989    0.000    0.635    0.635
    reward_2          0.037    0.161    0.227    0.820    0.036    0.018

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.550    0.098    5.600    0.000    0.550    0.350
   .EEC2              0.371    0.103    3.605    0.000    0.371    0.211
   .EEC3              0.463    0.119    3.889    0.000    0.463    0.284
   .IM1               0.198    0.046    4.328    0.000    0.198    0.140
   .IM2               0.237    0.059    4.005    0.000    0.237    0.162
   .IM3               0.259    0.076    3.424    0.001    0.259    0.173
   .EEC               0.610    0.145    4.219    0.000    0.597    0.597
   .IM                1.210    0.258    4.696    0.000    0.996    0.996

R-Square:
                   Estimate
    EEC1              0.650
    EEC2              0.789
    EEC3              0.716
    IM1               0.860
    IM2               0.838
    IM3               0.827
    EEC               0.403
    IM                0.004

Partial mediation EEF -> EEC

lavaan 0.6-19 ended normally after 31 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        24

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                39.268      36.279
  Degrees of freedom                                30          30
  P-value (Chi-square)                           0.120       0.199
  Scaling correction factor                                  1.082
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               762.973     680.484
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.121

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.987       0.990
  Tucker-Lewis Index (TLI)                       0.981       0.985
                                                                  
  Robust Comparative Fit Index (CFI)                         0.990
  Robust Tucker-Lewis Index (TLI)                            0.986

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1243.927   -1243.927
  Scaling correction factor                                  1.329
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1224.293   -1224.293
  Scaling correction factor                                  1.192
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                2535.854    2535.854
  Bayesian (BIC)                              2601.732    2601.732
  Sample-size adjusted Bayesian (SABIC)       2525.873    2525.873

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.043
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.093       0.085
  P-value H_0: RMSEA <= 0.050                    0.442       0.570
  P-value H_0: RMSEA >= 0.080                    0.143       0.077
                                                                  
  Robust RMSEA                                               0.044
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.090
  P-value H_0: Robust RMSEA <= 0.050                         0.538
  P-value H_0: Robust RMSEA >= 0.080                         0.109

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.991    0.791
    EEC2              1.194    0.107   11.143    0.000    1.184    0.893
    EEC3              1.101    0.099   11.071    0.000    1.091    0.854
  EEF =~                                                                
    EEF1              1.000                               0.759    0.841
    EEF2              1.058    0.157    6.750    0.000    0.803    0.780
    EEF3              0.921    0.155    5.953    0.000    0.699    0.738
  IM =~                                                                 
    IM1               1.000                               1.102    0.927
    IM2               1.006    0.061   16.564    0.000    1.108    0.915
    IM3               1.012    0.060   16.976    0.000    1.115    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.136    0.212   -0.643    0.521   -0.124   -0.062
  EEF ~                                                                 
    IM                0.366    0.061    6.010    0.000    0.531    0.531
    reward_2         -0.143    0.143   -1.000    0.317   -0.188   -0.094
  EEC ~                                                                 
    IM                0.396    0.100    3.956    0.000    0.440    0.440
    EEF               0.478    0.151    3.153    0.002    0.366    0.366
    reward_2          0.105    0.149    0.707    0.480    0.106    0.053

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.589    0.100    5.909    0.000    0.589    0.375
   .EEC2              0.355    0.101    3.525    0.000    0.355    0.202
   .EEC3              0.443    0.108    4.110    0.000    0.443    0.271
   .EEF1              0.239    0.081    2.933    0.003    0.239    0.293
   .EEF2              0.417    0.093    4.476    0.000    0.417    0.392
   .EEF3              0.408    0.108    3.777    0.000    0.408    0.455
   .IM1               0.199    0.044    4.475    0.000    0.199    0.141
   .IM2               0.238    0.057    4.138    0.000    0.238    0.162
   .IM3               0.257    0.074    3.453    0.001    0.257    0.171
   .EEC               0.496    0.141    3.523    0.000    0.505    0.505
   .EEF               0.405    0.133    3.044    0.002    0.703    0.703
   .IM                1.209    0.258    4.689    0.000    0.996    0.996

R-Square:
                   Estimate
    EEC1              0.625
    EEC2              0.798
    EEC3              0.729
    EEF1              0.707
    EEF2              0.608
    EEF3              0.545
    IM1               0.859
    IM2               0.838
    IM3               0.829
    EEC               0.495
    EEF               0.297
    IM                0.004

Partial mediation EEC -> EEF

lavaan 0.6-19 ended normally after 31 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        24

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                39.268      36.279
  Degrees of freedom                                30          30
  P-value (Chi-square)                           0.120       0.199
  Scaling correction factor                                  1.082
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               762.973     680.484
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.121

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.987       0.990
  Tucker-Lewis Index (TLI)                       0.981       0.985
                                                                  
  Robust Comparative Fit Index (CFI)                         0.990
  Robust Tucker-Lewis Index (TLI)                            0.986

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1243.927   -1243.927
  Scaling correction factor                                  1.329
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1224.293   -1224.293
  Scaling correction factor                                  1.192
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                2535.854    2535.854
  Bayesian (BIC)                              2601.732    2601.732
  Sample-size adjusted Bayesian (SABIC)       2525.873    2525.873

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.043
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.093       0.085
  P-value H_0: RMSEA <= 0.050                    0.442       0.570
  P-value H_0: RMSEA >= 0.080                    0.143       0.077
                                                                  
  Robust RMSEA                                               0.044
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.090
  P-value H_0: Robust RMSEA <= 0.050                         0.538
  P-value H_0: Robust RMSEA >= 0.080                         0.109

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.991    0.791
    EEC2              1.194    0.107   11.143    0.000    1.184    0.893
    EEC3              1.101    0.099   11.071    0.000    1.091    0.854
  EEF =~                                                                
    EEF1              1.000                               0.759    0.841
    EEF2              1.058    0.157    6.750    0.000    0.803    0.780
    EEF3              0.921    0.155    5.953    0.000    0.699    0.738
  IM =~                                                                 
    IM1               1.000                               1.102    0.927
    IM2               1.006    0.061   16.564    0.000    1.108    0.915
    IM3               1.012    0.060   16.976    0.000    1.115    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.136    0.212   -0.643    0.521   -0.124   -0.062
  EEF ~                                                                 
    IM                0.179    0.090    1.978    0.048    0.260    0.260
    reward_2         -0.155    0.136   -1.136    0.256   -0.204   -0.102
    EEC               0.329    0.122    2.686    0.007    0.429    0.429
  EEC ~                                                                 
    IM                0.570    0.082    6.995    0.000    0.634    0.634
    reward_2          0.037    0.158    0.234    0.815    0.037    0.019

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.589    0.100    5.909    0.000    0.589    0.375
   .EEC2              0.355    0.101    3.525    0.000    0.355    0.202
   .EEC3              0.443    0.108    4.110    0.000    0.443    0.271
   .EEF1              0.239    0.081    2.933    0.003    0.239    0.293
   .EEF2              0.417    0.093    4.476    0.000    0.417    0.392
   .EEF3              0.408    0.108    3.777    0.000    0.408    0.455
   .IM1               0.199    0.044    4.475    0.000    0.199    0.141
   .IM2               0.238    0.057    4.138    0.000    0.238    0.162
   .IM3               0.257    0.074    3.453    0.001    0.257    0.171
   .EEC               0.589    0.146    4.038    0.000    0.599    0.599
   .EEF               0.342    0.115    2.974    0.003    0.592    0.592
   .IM                1.209    0.258    4.689    0.000    0.996    0.996

R-Square:
                   Estimate
    EEC1              0.625
    EEC2              0.798
    EEC3              0.729
    EEF1              0.707
    EEF2              0.608
    EEF3              0.545
    IM1               0.859
    IM2               0.838
    IM3               0.829
    EEC               0.401
    EEF               0.408
    IM                0.004

With moderation

lavaan 0.6-19 ended normally after 46 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        37

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               142.934     131.540
  Degrees of freedom                                98          98
  P-value (Chi-square)                           0.002       0.013
  Scaling correction factor                                  1.087
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1552.498    1293.066
  Degrees of freedom                               120         120
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.201

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.969       0.971
  Tucker-Lewis Index (TLI)                       0.962       0.965
                                                                  
  Robust Comparative Fit Index (CFI)                         0.974
  Robust Tucker-Lewis Index (TLI)                            0.968

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2301.256   -2301.256
  Scaling correction factor                                  2.278
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2229.789   -2229.789
  Scaling correction factor                                  1.413
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4676.512    4676.512
  Bayesian (BIC)                              4778.074    4778.074
  Sample-size adjusted Bayesian (SABIC)       4661.124    4661.124

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.055
  90 Percent confidence interval - lower         0.039       0.028
  90 Percent confidence interval - upper         0.085       0.077
  P-value H_0: RMSEA <= 0.050                    0.169       0.361
  P-value H_0: RMSEA >= 0.080                    0.104       0.027
                                                                  
  Robust RMSEA                                               0.057
  90 Percent confidence interval - lower                     0.027
  90 Percent confidence interval - upper                     0.081
  P-value H_0: Robust RMSEA <= 0.050                         0.317
  P-value H_0: Robust RMSEA >= 0.080                         0.056

Standardized Root Mean Square Residual:

  SRMR                                           0.076       0.076

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.992    0.792
    EEC2              1.192    0.107   11.132    0.000    1.182    0.892
    EEC3              1.099    0.099   11.054    0.000    1.091    0.854
  EEF =~                                                                
    EEF1              1.000                               0.757    0.838
    EEF2              1.058    0.154    6.848    0.000    0.800    0.777
    EEF3              0.930    0.158    5.867    0.000    0.704    0.743
  ADT =~                                                                
    ADT1              1.000                               1.448    0.969
    ADT2              1.000    0.041   24.338    0.000    1.448    0.955
    ADT3              1.010    0.049   20.688    0.000    1.462    0.931
  IM =~                                                                 
    IM1               1.000                               1.100    0.927
    IM2               1.007    0.058   17.248    0.000    1.108    0.916
    IM3               1.009    0.057   17.649    0.000    1.111    0.908
  IM_ADT =~                                                             
    IM1.ADT1          1.000                               1.644    0.851
    IM2.ADT2          1.365    0.339    4.027    0.000    2.244    0.896
    IM3.ADT3          1.195    0.371    3.220    0.001    1.966    0.869

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.060    0.184   -0.325    0.745   -0.054   -0.027
    ADT               0.192    0.055    3.497    0.000    0.253    0.253
    IM_ADT           -0.261    0.117   -2.237    0.025   -0.391   -0.391
  EEF ~                                                                 
    IM                0.372    0.063    5.930    0.000    0.542    0.542
  EEC ~                                                                 
    IM                0.573    0.083    6.903    0.000    0.636    0.636

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.189    0.061    3.100    0.002    0.389    0.389
  ADT ~~                                                                
    IM_ADT           -0.514    0.417   -1.232    0.218   -0.216   -0.216

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.586    0.100    5.881    0.000    0.586    0.373
   .EEC2              0.358    0.102    3.500    0.000    0.358    0.204
   .EEC3              0.443    0.108    4.118    0.000    0.443    0.271
   .EEF1              0.242    0.083    2.913    0.004    0.242    0.297
   .EEF2              0.421    0.094    4.491    0.000    0.421    0.396
   .EEF3              0.402    0.107    3.757    0.000    0.402    0.448
   .ADT1              0.137    0.062    2.211    0.027    0.137    0.061
   .ADT2              0.204    0.055    3.693    0.000    0.204    0.089
   .ADT3              0.327    0.085    3.861    0.000    0.327    0.133
   .IM1               0.199    0.043    4.604    0.000    0.199    0.141
   .IM2               0.235    0.057    4.101    0.000    0.235    0.160
   .IM3               0.263    0.075    3.496    0.000    0.263    0.176
   .IM1.ADT1          1.029    0.408    2.525    0.012    1.029    0.276
   .IM2.ADT2          1.243    0.712    1.746    0.081    1.243    0.198
   .IM3.ADT3          1.254    0.541    2.320    0.020    1.254    0.245
   .EEC               0.586    0.144    4.067    0.000    0.596    0.596
   .EEF               0.405    0.137    2.951    0.003    0.707    0.707
    ADT               2.096    0.365    5.749    0.000    1.000    1.000
   .IM                0.896    0.203    4.420    0.000    0.740    0.740
    IM_ADT            2.704    1.257    2.151    0.032    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.627
    EEC2              0.796
    EEC3              0.729
    EEF1              0.703
    EEF2              0.604
    EEF3              0.552
    ADT1              0.939
    ADT2              0.911
    ADT3              0.867
    IM1               0.859
    IM2               0.840
    IM3               0.824
    IM1.ADT1          0.724
    IM2.ADT2          0.802
    IM3.ADT3          0.755
    EEC               0.404
    EEF               0.293
    IM                0.260
R square
    EEC1     EEC2     EEC3     EEF1     EEF2     EEF3     ADT1     ADT2 
   0.627    0.796    0.729    0.703    0.604    0.552    0.939    0.911 
    ADT3      IM1      IM2      IM3 IM1.ADT1 IM2.ADT2 IM3.ADT3      EEC 
   0.867    0.859    0.840    0.824    0.724    0.802    0.755    0.404 
     EEF       IM 
   0.293    0.260 

IM

lavaan 0.6-19 ended normally after 28 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                36.948      33.118
  Degrees of freedom                                24          24
  P-value (Chi-square)                           0.044       0.102
  Scaling correction factor                                  1.116
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               758.745     652.866
  Degrees of freedom                                36          36
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.162

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.982       0.985
  Tucker-Lewis Index (TLI)                       0.973       0.978
                                                                  
  Robust Comparative Fit Index (CFI)                         0.986
  Robust Tucker-Lewis Index (TLI)                            0.979

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1244.881   -1244.881
  Scaling correction factor                                  1.379
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1226.407   -1226.407
  Scaling correction factor                                  1.239
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                2531.762    2531.762
  Bayesian (BIC)                              2589.406    2589.406
  Sample-size adjusted Bayesian (SABIC)       2523.029    2523.029

Root Mean Square Error of Approximation:

  RMSEA                                          0.068       0.057
  90 Percent confidence interval - lower         0.011       0.000
  90 Percent confidence interval - upper         0.110       0.099
  P-value H_0: RMSEA <= 0.050                    0.228       0.364
  P-value H_0: RMSEA >= 0.080                    0.357       0.209
                                                                  
  Robust RMSEA                                               0.061
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.107
  P-value H_0: Robust RMSEA <= 0.050                         0.336
  P-value H_0: Robust RMSEA >= 0.080                         0.278

Standardized Root Mean Square Residual:

  SRMR                                           0.054       0.054

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.992    0.791
    EEC2              1.193    0.107   11.143    0.000    1.183    0.893
    EEC3              1.100    0.099   11.075    0.000    1.091    0.854
  EEF =~                                                                
    EEF1              1.000                               0.758    0.839
    EEF2              1.056    0.153    6.904    0.000    0.800    0.777
    EEF3              0.928    0.157    5.894    0.000    0.703    0.742
  IM =~                                                                 
    IM1               1.000                               1.101    0.927
    IM2               1.006    0.061   16.562    0.000    1.108    0.915
    IM3               1.012    0.060   16.935    0.000    1.115    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.371    0.062    5.959    0.000    0.539    0.539
  EEC ~                                                                 
    IM                0.395    0.101    3.905    0.000    0.439    0.439
    EEF               0.471    0.154    3.070    0.002    0.360    0.360

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.588    0.100    5.896    0.000    0.588    0.374
   .EEC2              0.357    0.102    3.496    0.000    0.357    0.203
   .EEC3              0.443    0.108    4.118    0.000    0.443    0.271
   .EEF1              0.241    0.083    2.919    0.004    0.241    0.296
   .EEF2              0.421    0.094    4.496    0.000    0.421    0.397
   .EEF3              0.403    0.107    3.754    0.000    0.403    0.449
   .IM1               0.199    0.044    4.489    0.000    0.199    0.141
   .IM2               0.238    0.057    4.138    0.000    0.238    0.162
   .IM3               0.257    0.075    3.442    0.001    0.257    0.171
   .EEC               0.499    0.139    3.599    0.000    0.507    0.507
   .EEF               0.408    0.137    2.965    0.003    0.710    0.710
    IM                1.213    0.261    4.641    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.626
    EEC2              0.797
    EEC3              0.729
    EEF1              0.704
    EEF2              0.603
    EEF3              0.551
    IM1               0.859
    IM2               0.838
    IM3               0.829
    EEC               0.493
    EEF               0.290

ADT and full mediation by IM

lavaan 0.6-19 ended normally after 39 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        29

  Number of observations                           115

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                72.082      64.074
  Degrees of freedom                                49          49
  P-value (Chi-square)                           0.018       0.073
  Scaling correction factor                                  1.125
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1240.604    1042.507
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.190

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.980       0.985
  Tucker-Lewis Index (TLI)                       0.974       0.979
                                                                  
  Robust Comparative Fit Index (CFI)                         0.985
  Robust Tucker-Lewis Index (TLI)                            0.980

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1656.983   -1656.983
  Scaling correction factor                                  1.422
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1620.942   -1620.942
  Scaling correction factor                                  1.235
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3371.965    3371.965
  Bayesian (BIC)                              3451.569    3451.569
  Sample-size adjusted Bayesian (SABIC)       3359.905    3359.905

Root Mean Square Error of Approximation:

  RMSEA                                          0.064       0.052
  90 Percent confidence interval - lower         0.028       0.000
  90 Percent confidence interval - upper         0.094       0.082
  P-value H_0: RMSEA <= 0.050                    0.225       0.443
  P-value H_0: RMSEA >= 0.080                    0.206       0.067
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.089
  P-value H_0: Robust RMSEA <= 0.050                         0.393
  P-value H_0: Robust RMSEA >= 0.080                         0.125

Standardized Root Mean Square Residual:

  SRMR                                           0.060       0.060

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.989    0.789
    EEC2              1.200    0.107   11.206    0.000    1.187    0.896
    EEC3              1.100    0.099   11.071    0.000    1.088    0.851
  EEF =~                                                                
    EEF1              1.000                               0.758    0.839
    EEF2              1.056    0.153    6.908    0.000    0.800    0.777
    EEF3              0.928    0.157    5.896    0.000    0.703    0.743
  IM =~                                                                 
    IM1               1.000                               1.102    0.927
    IM2               1.005    0.061   16.542    0.000    1.107    0.915
    IM3               1.011    0.060   16.946    0.000    1.114    0.910
  ADT =~                                                                
    ADT1              1.000                               1.448    0.969
    ADT2              0.999    0.041   24.397    0.000    1.447    0.954
    ADT3              1.009    0.049   20.684    0.000    1.462    0.931

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.183    0.092    1.984    0.047    0.266    0.266
    EEC               0.332    0.125    2.669    0.008    0.434    0.434
  EEC ~                                                                 
    IM                0.516    0.081    6.337    0.000    0.576    0.576
    ADT               0.119    0.062    1.936    0.053    0.175    0.175
  IM ~                                                                  
    ADT               0.251    0.091    2.764    0.006    0.330    0.330

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.594    0.100    5.949    0.000    0.594    0.378
   .EEC2              0.348    0.100    3.464    0.001    0.348    0.198
   .EEC3              0.451    0.108    4.160    0.000    0.451    0.276
   .EEF1              0.241    0.083    2.921    0.003    0.241    0.296
   .EEF2              0.421    0.094    4.494    0.000    0.421    0.397
   .EEF3              0.403    0.107    3.761    0.000    0.403    0.449
   .IM1               0.197    0.045    4.424    0.000    0.197    0.140
   .IM2               0.239    0.059    4.083    0.000    0.239    0.163
   .IM3               0.257    0.075    3.432    0.001    0.257    0.171
   .ADT1              0.135    0.061    2.207    0.027    0.135    0.060
   .ADT2              0.206    0.056    3.699    0.000    0.206    0.090
   .ADT3              0.326    0.085    3.843    0.000    0.326    0.132
   .EEC               0.559    0.145    3.856    0.000    0.572    0.572
   .EEF               0.342    0.118    2.890    0.004    0.595    0.595
   .IM                1.082    0.215    5.036    0.000    0.891    0.891
    ADT               2.098    0.364    5.762    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.622
    EEC2              0.802
    EEC3              0.724
    EEF1              0.704
    EEF2              0.603
    EEF3              0.551
    IM1               0.860
    IM2               0.837
    IM3               0.829
    ADT1              0.940
    ADT2              0.910
    ADT3              0.868
    EEC               0.428
    EEF               0.405
    IM                0.109

Multigroup analysis on ADT

Interaction effect between ADT and reward groups

continous variable
lavaan 0.6-19 ended normally after 56 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        82

  Number of observations per group:                   
    AI                                              56
    control                                         59

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               144.775     153.957
  Degrees of freedom                                98          98
  P-value (Chi-square)                           0.002       0.000
  Scaling correction factor                                  0.940
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    AI                                          87.258      87.258
    control                                     66.699      66.699

Model Test Baseline Model:

  Test statistic                              1321.078    1231.518
  Degrees of freedom                               132         132
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.073

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.961       0.949
  Tucker-Lewis Index (TLI)                       0.947       0.931
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.940

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1636.906   -1636.906
  Scaling correction factor                                  1.288
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1564.518   -1564.518
  Scaling correction factor                                  1.099
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3437.812    3437.812
  Bayesian (BIC)                              3662.897    3662.897
  Sample-size adjusted Bayesian (SABIC)       3403.710    3403.710

Root Mean Square Error of Approximation:

  RMSEA                                          0.091       0.100
  90 Percent confidence interval - lower         0.057       0.067
  90 Percent confidence interval - upper         0.121       0.130
  P-value H_0: RMSEA <= 0.050                    0.027       0.010
  P-value H_0: RMSEA >= 0.080                    0.729       0.852
                                                                  
  Robust RMSEA                                               0.097
  90 Percent confidence interval - lower                     0.066
  90 Percent confidence interval - upper                     0.125
  P-value H_0: Robust RMSEA <= 0.050                         0.009
  P-value H_0: Robust RMSEA >= 0.080                         0.829

Standardized Root Mean Square Residual:

  SRMR                                           0.059       0.059

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [AI]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.052    0.826
    EEC2              1.155    0.150    7.718    0.000    1.215    0.914
    EEC3              1.143    0.155    7.350    0.000    1.202    0.869
  EEF =~                                                                
    EEF1              1.000                               0.918    0.859
    EEF2              1.115    0.200    5.567    0.000    1.023    0.872
    EEF3              0.909    0.150    6.051    0.000    0.834    0.833
  IM =~                                                                 
    IM1               1.000                               1.129    0.940
    IM2               0.976    0.090   10.811    0.000    1.102    0.892
    IM3               1.012    0.062   16.268    0.000    1.142    0.913
  ADT =~                                                                
    ADT1              1.000                               1.600    0.980
    ADT2              0.996    0.057   17.442    0.000    1.593    0.969
    ADT3              0.997    0.066   15.095    0.000    1.595    0.946

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.084    0.166    0.505    0.614    0.103    0.103
    EEC               0.508    0.212    2.396    0.017    0.582    0.582
  EEC ~                                                                 
    IM                0.577    0.137    4.213    0.000    0.619    0.619
    ADT               0.089    0.080    1.119    0.263    0.135    0.135
  IM ~                                                                  
    ADT               0.235    0.129    1.816    0.069    0.332    0.332

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.643    0.170   27.277    0.000    4.643    3.645
   .EEC2              4.982    0.178   28.043    0.000    4.982    3.747
   .EEC3              5.018    0.185   27.168    0.000    5.018    3.630
   .EEF1              5.482    0.143   38.380    0.000    5.482    5.129
   .EEF2              5.625    0.157   35.868    0.000    5.625    4.793
   .EEF3              5.821    0.134   43.480    0.000    5.821    5.810
   .IM1               5.357    0.161   33.363    0.000    5.357    4.458
   .IM2               5.786    0.165   35.054    0.000    5.786    4.684
   .IM3               5.589    0.167   33.451    0.000    5.589    4.470
   .ADT1              5.393    0.218   24.711    0.000    5.393    3.302
   .ADT2              5.286    0.220   24.054    0.000    5.286    3.214
   .ADT3              5.268    0.225   23.396    0.000    5.268    3.126

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.517    0.149    3.465    0.001    0.517    0.318
   .EEC2              0.291    0.141    2.064    0.039    0.291    0.165
   .EEC3              0.467    0.183    2.555    0.011    0.467    0.244
   .EEF1              0.300    0.128    2.347    0.019    0.300    0.263
   .EEF2              0.330    0.146    2.270    0.023    0.330    0.240
   .EEF3              0.308    0.131    2.358    0.018    0.308    0.307
   .IM1               0.169    0.070    2.421    0.015    0.169    0.117
   .IM2               0.312    0.110    2.832    0.005    0.312    0.204
   .IM3               0.259    0.126    2.062    0.039    0.259    0.166
   .ADT1              0.108    0.088    1.228    0.219    0.108    0.040
   .ADT2              0.168    0.069    2.425    0.015    0.168    0.062
   .ADT3              0.296    0.107    2.760    0.006    0.296    0.104
   .EEC               0.600    0.215    2.787    0.005    0.542    0.542
   .EEF               0.481    0.179    2.691    0.007    0.571    0.571
   .IM                1.134    0.360    3.147    0.002    0.890    0.890
    ADT               2.559    0.566    4.524    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.682
    EEC2              0.835
    EEC3              0.756
    EEF1              0.737
    EEF2              0.760
    EEF3              0.693
    IM1               0.883
    IM2               0.796
    IM3               0.834
    ADT1              0.960
    ADT2              0.938
    ADT3              0.896
    EEC               0.458
    EEF               0.429
    IM                0.110


Group 2 [control]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.926    0.751
    EEC2              1.252    0.155    8.055    0.000    1.159    0.878
    EEC3              1.051    0.131    8.035    0.000    0.972    0.831
  EEF =~                                                                
    EEF1              1.000                               0.452    0.650
    EEF2              0.893    0.170    5.253    0.000    0.403    0.475
    EEF3              1.501    0.722    2.078    0.038    0.678    0.760
  IM =~                                                                 
    IM1               1.000                               1.075    0.919
    IM2               1.030    0.088   11.765    0.000    1.108    0.936
    IM3               1.008    0.107    9.431    0.000    1.084    0.906
  ADT =~                                                                
    ADT1              1.000                               1.283    0.956
    ADT2              0.992    0.053   18.859    0.000    1.274    0.933
    ADT3              1.024    0.065   15.803    0.000    1.314    0.911

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.246    0.099    2.491    0.013    0.586    0.586
    EEC               0.137    0.100    1.374    0.170    0.282    0.282
  EEC ~                                                                 
    IM                0.440    0.089    4.929    0.000    0.511    0.511
    ADT               0.164    0.083    1.969    0.049    0.227    0.227
  IM ~                                                                  
    ADT               0.278    0.120    2.314    0.021    0.332    0.332

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.729    0.160   29.465    0.000    4.729    3.836
   .EEC2              5.017    0.172   29.168    0.000    5.017    3.797
   .EEC3              5.051    0.152   33.142    0.000    5.051    4.315
   .EEF1              5.695    0.090   62.929    0.000    5.695    8.193
   .EEF2              5.915    0.111   53.486    0.000    5.915    6.963
   .EEF3              5.864    0.116   50.515    0.000    5.864    6.576
   .IM1               5.525    0.152   36.287    0.000    5.525    4.724
   .IM2               5.915    0.154   38.406    0.000    5.915    5.000
   .IM3               5.695    0.156   36.550    0.000    5.695    4.758
   .ADT1              5.593    0.175   32.017    0.000    5.593    4.168
   .ADT2              5.610    0.178   31.555    0.000    5.610    4.108
   .ADT3              5.508    0.188   29.335    0.000    5.508    3.819

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.663    0.136    4.874    0.000    0.663    0.436
   .EEC2              0.401    0.150    2.681    0.007    0.401    0.230
   .EEC3              0.425    0.140    3.032    0.002    0.425    0.310
   .EEF1              0.279    0.114    2.450    0.014    0.279    0.578
   .EEF2              0.559    0.128    4.368    0.000    0.559    0.775
   .EEF3              0.335    0.110    3.051    0.002    0.335    0.422
   .IM1               0.212    0.052    4.104    0.000    0.212    0.155
   .IM2               0.173    0.044    3.884    0.000    0.173    0.123
   .IM3               0.258    0.086    3.014    0.003    0.258    0.180
   .ADT1              0.153    0.081    1.898    0.058    0.153    0.085
   .ADT2              0.243    0.086    2.816    0.005    0.243    0.130
   .ADT3              0.355    0.131    2.717    0.007    0.355    0.171
   .EEC               0.523    0.199    2.634    0.008    0.610    0.610
   .EEF               0.078    0.076    1.028    0.304    0.384    0.384
   .IM                1.029    0.232    4.441    0.000    0.890    0.890
    ADT               1.647    0.436    3.781    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.564
    EEC2              0.770
    EEC3              0.690
    EEF1              0.422
    EEF2              0.225
    EEF3              0.578
    IM1               0.845
    IM2               0.877
    IM3               0.820
    ADT1              0.915
    ADT2              0.870
    ADT3              0.829
    EEC               0.390
    EEF               0.616
    IM                0.110
`geom_smooth()` using formula = 'y ~ x'

`geom_smooth()` using formula = 'y ~ x'

- as categorical variables of ADT

high >5
dummies where high as above 5
lavaan 0.6-19 ended normally after 87 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    AI                                              56
    control                                         59

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                81.559      86.041
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.034       0.015
  Scaling correction factor                                  0.948
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    AI                                          45.433      45.433
    control                                     40.608      40.608

Model Test Baseline Model:

  Test statistic                               835.666     784.979
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.065

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.971       0.963
  Tucker-Lewis Index (TLI)                       0.957       0.944
                                                                  
  Robust Comparative Fit Index (CFI)                         0.967
  Robust Tucker-Lewis Index (TLI)                            0.950

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1216.586   -1216.586
  Scaling correction factor                                  1.232
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1175.806   -1175.806
  Scaling correction factor                                  1.097
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                2565.171    2565.171
  Bayesian (BIC)                              2746.337    2746.337
  Sample-size adjusted Bayesian (SABIC)       2537.723    2537.723

Root Mean Square Error of Approximation:

  RMSEA                                          0.079       0.087
  90 Percent confidence interval - lower         0.023       0.038
  90 Percent confidence interval - upper         0.120       0.127
  P-value H_0: RMSEA <= 0.050                    0.149       0.093
  P-value H_0: RMSEA >= 0.080                    0.508       0.626
                                                                  
  Robust RMSEA                                               0.085
  90 Percent confidence interval - lower                     0.038
  90 Percent confidence interval - upper                     0.123
  P-value H_0: Robust RMSEA <= 0.050                         0.094
  P-value H_0: Robust RMSEA >= 0.080                         0.596

Standardized Root Mean Square Residual:

  SRMR                                           0.049       0.049

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [AI]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.054    0.827
    EEC2              1.152    0.150    7.673    0.000    1.214    0.913
    EEC3              1.141    0.156    7.293    0.000    1.203    0.870
  EEF =~                                                                
    EEF1              1.000                               0.918    0.859
    EEF2              1.118    0.203    5.521    0.000    1.027    0.875
    EEF3              0.904    0.148    6.098    0.000    0.830    0.829
  IM =~                                                                 
    IM1               1.000                               1.129    0.940
    IM2               0.976    0.091   10.782    0.000    1.103    0.893
    IM3               1.011    0.062   16.283    0.000    1.141    0.913

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.056    0.155    0.363    0.717    0.069    0.069
    EEC               0.488    0.199    2.454    0.014    0.560    0.560
    ADT_high          0.295    0.243    1.215    0.224    0.322    0.152
  EEC ~                                                                 
    IM                0.600    0.135    4.455    0.000    0.642    0.642
    ADT_high          0.163    0.240    0.678    0.498    0.154    0.073
  IM ~                                                                  
    ADT_high          0.731    0.352    2.078    0.038    0.648    0.307

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.246    0.300   14.174    0.000    4.246    3.333
   .EEC2              4.525    0.305   14.837    0.000    4.525    3.403
   .EEC3              4.565    0.320   14.253    0.000    4.565    3.302
   .EEF1              5.066    0.256   19.783    0.000    5.066    4.739
   .EEF2              5.160    0.286   18.028    0.000    5.160    4.397
   .EEF3              5.445    0.219   24.873    0.000    5.445    5.435
   .IM1               4.874    0.319   15.301    0.000    4.874    4.056
   .IM2               5.314    0.344   15.470    0.000    5.314    4.302
   .IM3               5.101    0.332   15.351    0.000    5.101    4.079

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.512    0.150    3.404    0.001    0.512    0.316
   .EEC2              0.295    0.143    2.059    0.040    0.295    0.167
   .EEC3              0.464    0.184    2.521    0.012    0.464    0.243
   .EEF1              0.299    0.127    2.358    0.018    0.299    0.262
   .EEF2              0.323    0.140    2.305    0.021    0.323    0.234
   .EEF3              0.315    0.130    2.427    0.015    0.315    0.313
   .IM1               0.169    0.069    2.435    0.015    0.169    0.117
   .IM2               0.310    0.110    2.819    0.005    0.310    0.203
   .IM3               0.261    0.126    2.070    0.038    0.261    0.167
   .EEC               0.614    0.217    2.825    0.005    0.553    0.553
   .EEF               0.468    0.169    2.772    0.006    0.555    0.555
   .IM                1.155    0.385    3.004    0.003    0.906    0.906

R-Square:
                   Estimate
    EEC1              0.684
    EEC2              0.833
    EEC3              0.757
    EEF1              0.738
    EEF2              0.766
    EEF3              0.687
    IM1               0.883
    IM2               0.797
    IM3               0.833
    EEC               0.447
    EEF               0.445
    IM                0.094


Group 2 [control]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.934    0.758
    EEC2              1.231    0.153    8.067    0.000    1.150    0.871
    EEC3              1.048    0.130    8.054    0.000    0.979    0.836
  EEF =~                                                                
    EEF1              1.000                               0.449    0.645
    EEF2              0.915    0.170    5.391    0.000    0.411    0.483
    EEF3              1.510    0.622    2.428    0.015    0.677    0.760
  IM =~                                                                 
    IM1               1.000                               1.075    0.919
    IM2               1.028    0.089   11.501    0.000    1.105    0.934
    IM3               1.010    0.110    9.189    0.000    1.087    0.908

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.252    0.094    2.686    0.007    0.603    0.603
    EEC               0.061    0.095    0.638    0.524    0.127    0.127
    ADT_high          0.334    0.147    2.267    0.023    0.746    0.348
  EEC ~                                                                 
    IM                0.460    0.092    4.979    0.000    0.529    0.529
    ADT_high          0.551    0.202    2.734    0.006    0.590    0.276
  IM ~                                                                  
    ADT_high          0.479    0.328    1.459    0.144    0.445    0.208

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.206    0.219   19.235    0.000    4.206    3.412
   .EEC2              4.373    0.231   18.967    0.000    4.373    3.310
   .EEC3              4.503    0.199   22.590    0.000    4.503    3.847
   .EEF1              5.355    0.110   48.583    0.000    5.355    7.703
   .EEF2              5.604    0.123   45.415    0.000    5.604    6.597
   .EEF3              5.351    0.201   26.625    0.000    5.351    6.000
   .IM1               5.201    0.280   18.542    0.000    5.201    4.446
   .IM2               5.582    0.296   18.826    0.000    5.582    4.718
   .IM3               5.367    0.276   19.458    0.000    5.367    4.484

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.647    0.130    4.964    0.000    0.647    0.426
   .EEC2              0.423    0.155    2.727    0.006    0.423    0.242
   .EEC3              0.412    0.143    2.874    0.004    0.412    0.301
   .EEF1              0.282    0.095    2.957    0.003    0.282    0.584
   .EEF2              0.553    0.119    4.653    0.000    0.553    0.766
   .EEF3              0.336    0.100    3.354    0.001    0.336    0.423
   .IM1               0.211    0.054    3.884    0.000    0.211    0.155
   .IM2               0.178    0.041    4.306    0.000    0.178    0.128
   .IM3               0.251    0.085    2.972    0.003    0.251    0.176
   .EEC               0.509    0.188    2.705    0.007    0.583    0.583
   .EEF               0.058    0.055    1.056    0.291    0.288    0.288
   .IM                1.107    0.269    4.117    0.000    0.957    0.957

R-Square:
                   Estimate
    EEC1              0.574
    EEC2              0.758
    EEC3              0.699
    EEF1              0.416
    EEF2              0.234
    EEF3              0.577
    IM1               0.845
    IM2               0.872
    IM3               0.824
    EEC               0.417
    EEF               0.712
    IM                0.043

Composite variables

EEF

Robost one-way ANOVA


Call: rlm(formula = EEF_composite ~ Condition, data = data_with_dummies)
Residuals:
     Min       1Q   Median       3Q      Max 
-2.74938 -0.48067 -0.08272  0.51933  1.25062 

Coefficients:
            Value   Std. Error t value
(Intercept)  5.8140  0.1082    53.7381
Condition2  -0.0646  0.1550    -0.4168

Residual standard error: 0.7699 on 113 degrees of freedom

Checks assumptions

One-way ANOVA using trimmed means

Call:
t1way(formula = EEF_composite ~ Condition, data = data_with_dummies, 
    tr = 0.2)

Test statistic: F = 0.0668 
Degrees of freedom 1: 1 
Degrees of freedom 2: 62.91 
p-value: 0.79692 

Explanatory measure of effect size: 0.11 
Bootstrap CI: [0.01; 0.27]

##EEC ### One-way ANOVA using trimmed means


Call: rlm(formula = EEC_composite ~ Condition, data = data_with_dummies)
Residuals:
     Min       1Q   Median       3Q      Max 
-3.40617 -0.61602  0.05065  0.59383  2.05065 

Coefficients:
            Value   Std. Error t value
(Intercept)  4.9494  0.1383    35.7832
Condition2   0.1235  0.1982     0.6230

Residual standard error: 0.9133 on 113 degrees of freedom
Call:
t1way(formula = EEC_composite ~ Condition, data = data_with_dummies, 
    tr = 0.2)

Test statistic: F = 0.9456 
Degrees of freedom 1: 1 
Degrees of freedom 2: 68.99 
p-value: 0.33424 

Explanatory measure of effect size: 0.18 
Bootstrap CI: [0.01; 0.43]

##IM ### Robost one-way ANOVA


Call: rlm(formula = IM_composite ~ Condition, data = data_with_dummies)
Residuals:
    Min      1Q  Median      3Q     Max 
-4.7117 -0.6319  0.1145  0.4478  1.2883 

Coefficients:
            Value   Std. Error t value
(Intercept)  5.8855  0.1303    45.1635
Condition2  -0.1738  0.1867    -0.9308

Residual standard error: 0.8185 on 113 degrees of freedom
Call:
t1way(formula = IM_composite ~ Condition, data = data_with_dummies, 
    tr = 0.2)

Test statistic: F = 0.9048 
Degrees of freedom 1: 1 
Degrees of freedom 2: 68.54 
p-value: 0.34483 

Explanatory measure of effect size: 0.17 
Bootstrap CI: [0.02; 0.45]

AI interaction with ADT


Call: rlm(formula = EEF_composite ~ Condition * ADT_high, data = data_with_dummies)
Residuals:
     Min       1Q   Median       3Q      Max 
-2.37744 -0.58570  0.08097  0.62256  1.08097 

Coefficients:
                    Value   Std. Error t value
(Intercept)          5.4211  0.1701    31.8786
Condition2          -0.0436  0.2405    -0.1814
ADT_high             0.5956  0.2065     2.8839
Condition2:ADT_high -0.0540  0.2940    -0.1838

Residual standard error: 0.8684 on 111 degrees of freedom

Call: rlm(formula = EEC_composite ~ Condition * ADT_high, data = data_with_dummies)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.2203 -0.8082  0.1130  0.7716  1.7797 

Coefficients:
                    Value   Std. Error t value
(Intercept)          4.3960  0.2439    18.0230
Condition2           0.2113  0.3449     0.6127
ADT_high             0.8324  0.2962     2.8101
Condition2:ADT_high -0.2194  0.4217    -0.5204

Residual standard error: 1.144 on 111 degrees of freedom

Call: rlm(formula = IM_composite ~ Condition * ADT_high, data = data_with_dummies)
Residuals:
    Min      1Q  Median      3Q     Max 
-4.3333 -0.6155  0.1024  0.4616  1.6667 

Coefficients:
                    Value   Std. Error t value
(Intercept)          5.5384  0.1944    28.4932
Condition2          -0.2051  0.2749    -0.7461
ADT_high             0.4722  0.2361     2.0004
Condition2:ADT_high  0.0920  0.3360     0.2739

Residual standard error: 0.8366 on 111 degrees of freedom