AI

Author

Marie Lasrado & Seidali Kurtmollaiev


Data preparation

Import

Sample size

$all
[1] 101

Pre-screener flag

surveydata$prescreener_flag <- (
  (surveydata$prescreener_employment_work_role == 7 | 
     surveydata$prescreener_employment_work_role == 8 | 
     surveydata$prescreener_employer_type == 2 |
     surveydata$prescreener_employer_type == 3 |
     surveydata$prescreener_employer_type == 4 |
     surveydata$prescreener_employer_type == 5 |
     surveydata$prescreener_employer_type == 9)
  )

Data Quality

Manipulation, pre-screener validations and bot

Manipulation flag

   
    FALSE TRUE
  1    48    5
  2    47    1

Bot flag


FALSE  TRUE 
   99     2 

Pre-screener flag

  prescreener_employment_work_role  n
1                                1  2
2                                7  6
3                                8 20
  prescreener_employer_type n_flag
1                         1     26
2                         9      2

Attention

Duration

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.550   2.917   3.950   4.981   5.500  45.017 

Outliers defined as 3 std. deviations below or above the mean
Outliers on completion time

FALSE  TRUE 
  100     1 

On scales

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.5149  1.0553  1.1645  1.2100  1.3027  2.2344 
Flagged outliers based on scales

FALSE  TRUE 
   98     3 

Removing bad participants

Exclude participants

excluded <- subset(surveydata, cond.reward_flag == TRUE | prescreener_flag == TRUE | bot_flag == TRUE |  outliers_completion == TRUE | outliers_scales == TRUE)
cond.reward_flag prescreener_flag outliers_completion bot_flag outliers_scales n
TRUE FALSE FALSE FALSE FALSE 1
TRUE FALSE FALSE TRUE FALSE 1
TRUE TRUE FALSE FALSE FALSE 4
FALSE FALSE FALSE FALSE TRUE 2
FALSE FALSE FALSE TRUE FALSE 1
FALSE FALSE TRUE FALSE FALSE 1
FALSE TRUE FALSE FALSE FALSE 23
FALSE TRUE FALSE FALSE TRUE 1

Descriptive on good participants

Conditions

Group statistics

# A tibble: 2 × 6
  cond.reward     n mean_EEF sd_EEF mean_EEC sd_EEC
  <chr>       <int>    <dbl>  <dbl>    <dbl>  <dbl>
1 AI             33     5.63  1.02      4.78   1.29
2 control        34     5.98  0.635     4.96   1.18

Scales

Descriptive stats on scales

 all good 
 101   67 
     vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
IM1     1 67 5.60 1.14      6    5.71 1.48   1   7     6 -1.29     3.17 0.14
IM2     2 67 5.96 1.09      6    6.09 1.48   1   7     6 -2.04     6.39 0.13
IM3     3 67 5.79 1.19      6    5.96 1.48   1   7     6 -1.42     2.84 0.15
EEF1    4 67 5.70 0.94      6    5.76 1.48   2   7     5 -1.13     2.68 0.11
EEF2    5 67 5.76 1.13      6    5.89 1.48   2   7     5 -0.90     0.74 0.14
EEF3    6 67 5.96 0.94      6    6.05 1.48   3   7     4 -0.76     0.20 0.12
EEC1    7 67 4.67 1.30      5    4.69 1.48   1   7     6 -0.29    -0.13 0.16
EEC2    8 67 4.97 1.39      5    5.05 1.48   2   7     5 -0.58    -0.40 0.17
EEC3    9 67 4.97 1.33      5    5.07 1.48   1   7     6 -0.79     0.27 0.16
ADT1   10 67 5.51 1.53      6    5.75 1.48   1   7     6 -1.30     1.10 0.19
ADT2   11 67 5.43 1.55      6    5.65 1.48   1   7     6 -1.16     0.70 0.19
ADT3   12 67 5.39 1.54      6    5.60 1.48   1   7     6 -1.12     0.41 0.19

KMO

Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = efa_data_good)
Overall MSA =  0.84
MSA for each item = 
 IM1  IM2  IM3 EEF1 EEF2 EEF3 EEC1 EEC2 EEC3 ADT1 ADT2 ADT3 
0.88 0.85 0.86 0.72 0.78 0.93 0.87 0.84 0.88 0.78 0.82 0.82 

Non-normality test across all scales

$IM1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.83792, p-value = 4.492e-07


$IM2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.74316, p-value = 1.697e-09


$IM3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.81898, p-value = 1.286e-07


$EEF1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.82878, p-value = 2.431e-07


$EEF2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.86159, p-value = 2.436e-06


$EEF3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.85007, p-value = 1.05e-06


$EEC1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.94092, p-value = 0.00323


$EEC2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89981, p-value = 5.462e-05


$EEC3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.9022, p-value = 6.757e-05


$ADT1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.81774, p-value = 1.188e-07


$ADT2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.83749, p-value = 4.363e-07


$ADT3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.8305, p-value = 2.725e-07

Descriptive on EEF composite


    Shapiro-Wilk normality test

data:  data_filtered$EEF_composite
W = 0.91356, p-value = 0.0001934

Descriptive on EEC composite


    Shapiro-Wilk normality test

data:  data_filtered$EEC_composite
W = 0.95101, p-value = 0.01024

DV per condition

# A tibble: 2 × 3
  cond.reward     n shapiro_p
  <chr>       <int>     <dbl>
1 AI             33   0.00763
2 control        34   0.0267 
# A tibble: 2 × 3
  cond.reward     n shapiro_p
  <chr>       <int>     <dbl>
1 AI             33   0.00784
2 control        34   0.294  

Descriptive on IM composite


    Shapiro-Wilk normality test

data:  data_filtered$IM_composite
W = 0.84492, p-value = 7.291e-07

IM per condition

# A tibble: 2 × 3
  cond.reward     n shapiro_p
  <chr>       <int>     <dbl>
1 AI             33 0.0000421
2 control        34 0.000250 

Data analysis

EFA

Parallel analysis suggests that the number of factors =  2  and the number of components =  NA 
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
The estimated weights for the factor scores are probably incorrect.  Try a
different factor score estimation method.
Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
ultra-Heywood case was detected.  Examine the results carefully
Factor Analysis using method =  minres
Call: fa(r = efa_data_good, nfactors = 4, rotate = "varimax")
Unstandardized loadings (pattern matrix) based upon covariance matrix
      MR2  MR4  MR1  MR3 h2      u2 H2 U2
IM1    NA 0.42 0.75   NA NA  0.1335 NA NA
IM2    NA   NA 0.82   NA NA  0.1687 NA NA
IM3    NA   NA 0.78   NA NA  0.2265 NA NA
EEF1   NA   NA   NA 0.98 NA -0.0061 NA NA
EEF2   NA   NA   NA 0.61 NA  0.4525 NA NA
EEF3   NA 0.42   NA 0.46 NA  0.4223 NA NA
EEC1   NA 0.75   NA   NA NA  0.3117 NA NA
EEC2   NA 0.80   NA   NA NA  0.1533 NA NA
EEC3   NA 0.82   NA   NA NA  0.1780 NA NA
ADT1 0.96   NA   NA   NA NA  0.0473 NA NA
ADT2 0.91   NA   NA   NA NA  0.0477 NA NA
ADT3 0.89   NA   NA   NA NA  0.1226 NA NA

                      MR2 MR4 MR1 MR3
SS loadings            NA  NA  NA  NA
Proportion Var         NA  NA  NA  NA
Cumulative Var         NA  NA  NA  NA
Proportion Explained   NA  NA  NA  NA
Cumulative Proportion  NA  NA  NA  NA

 Standardized loadings (pattern matrix)
     item MR2 MR4 MR1 MR3 h2 u2
IM1     1  NA  NA  NA  NA NA NA
IM2     2  NA  NA  NA  NA NA NA
IM3     3  NA  NA  NA  NA NA NA
EEF1    4  NA  NA  NA  NA NA NA
EEF2    5  NA  NA  NA  NA NA NA
EEF3    6  NA  NA  NA  NA NA NA
EEC1    7  NA  NA  NA  NA NA NA
EEC2    8  NA  NA  NA  NA NA NA
EEC3    9  NA  NA  NA  NA NA NA
ADT1   10  NA  NA  NA  NA NA NA
ADT2   11  NA  NA  NA  NA NA NA
ADT3   12  NA  NA  NA  NA NA NA

                MR2 MR4 MR1 MR3
SS loadings      NA  NA  NA  NA
Proportion Var   NA  NA  NA  NA
Cumulative Var   NA  NA  NA  NA
Cum. factor Var  NA  NA  NA  NA

Mean item complexity =  1.6
Test of the hypothesis that 4 factors are sufficient.

df null model =  66  with the objective function =  12.29 with Chi Square =  751.43
df of  the model are 24  and the objective function was  0.57 

The root mean square of the residuals (RMSR) is  0.02 
The df corrected root mean square of the residuals is  0.03 

The harmonic n.obs is  67 with the empirical chi square  2.8  with prob <  1 
The total n.obs was  67  with Likelihood Chi Square =  33.62  with prob <  0.092 

Tucker Lewis Index of factoring reliability =  0.959
RMSEA index =  0.076  and the 90 % confidence intervals are  0 0.135
BIC =  -67.29
Fit based upon off diagonal values = 1

CFA

model1<-'
  EEC =~ EEC1 + EEC2 + EEC3
  EEF =~ EEF1 + EEF2 + EEF3
  ADT =~ ADT1 + ADT2 + ADT3
  IM =~ IM1 + IM2 + IM3'
fit1<-cfa(model1,data = efa_data_good, estimator = "MLR")
summary(fit1, ci = TRUE, fit.measures=TRUE, rsquare=TRUE,standardized=TRUE)
lavaan 0.6-19 ended normally after 45 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                            67

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                96.871     105.097
  Degrees of freedom                                48          48
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.922
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               823.097     823.017
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.935       0.925
  Tucker-Lewis Index (TLI)                       0.911       0.896
                                                                  
  Robust Comparative Fit Index (CFI)                         0.930
  Robust Tucker-Lewis Index (TLI)                            0.904

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -943.149    -943.149
  Scaling correction factor                                  1.453
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -894.714    -894.714
  Scaling correction factor                                  1.126
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1946.299    1946.299
  Bayesian (BIC)                              2012.440    2012.440
  Sample-size adjusted Bayesian (SABIC)       1917.980    1917.980

Root Mean Square Error of Approximation:

  RMSEA                                          0.123       0.133
  90 Percent confidence interval - lower         0.087       0.097
  90 Percent confidence interval - upper         0.159       0.169
  P-value H_0: RMSEA <= 0.050                    0.001       0.000
  P-value H_0: RMSEA >= 0.080                    0.975       0.990
                                                                  
  Robust RMSEA                                               0.128
  90 Percent confidence interval - lower                     0.095
  90 Percent confidence interval - upper                     0.161
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.989

Standardized Root Mean Square Residual:

  SRMR                                           0.062       0.062

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC =~                                                                
    EEC1              1.000                               1.000    1.000
    EEC2              1.267    0.145    8.717    0.000    0.982    1.551
    EEC3              1.131    0.125    9.026    0.000    0.885    1.377
  EEF =~                                                                
    EEF1              1.000                               1.000    1.000
    EEF2              1.189    0.228    5.216    0.000    0.742    1.636
    EEF3              1.005    0.400    2.515    0.012    0.222    1.789
  ADT =~                                                                
    ADT1              1.000                               1.000    1.000
    ADT2              1.028    0.067   15.368    0.000    0.897    1.160
    ADT3              0.988    0.066   15.014    0.000    0.859    1.117
  IM =~                                                                 
    IM1               1.000                               1.000    1.000
    IM2               0.874    0.099    8.862    0.000    0.680    1.067
    IM3               0.936    0.076   12.314    0.000    0.787    1.085
   Std.lv  Std.all
                  
    1.023    0.795
    1.295    0.937
    1.157    0.879
                  
    0.725    0.779
    0.862    0.769
    0.729    0.778
                  
    1.452    0.955
    1.493    0.971
    1.435    0.941
                  
    1.086    0.958
    0.949    0.875
    1.017    0.863

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC ~~                                                                
    EEF               0.533    0.146    3.653    0.000    0.247    0.819
    ADT               0.570    0.260    2.193    0.028    0.061    1.079
    IM                0.801    0.261    3.069    0.002    0.289    1.312
  EEF ~~                                                                
    ADT               0.433    0.164    2.641    0.008    0.112    0.754
    IM                0.530    0.138    3.843    0.000    0.259    0.800
  ADT ~~                                                                
    IM                0.836    0.277    3.020    0.003    0.294    1.379
   Std.lv  Std.all
                  
    0.719    0.719
    0.384    0.384
    0.721    0.721
                  
    0.411    0.411
    0.673    0.673
                  
    0.530    0.530

Variances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
   .EEC1              0.608    0.112    5.433    0.000    0.389    0.827
   .EEC2              0.232    0.089    2.617    0.009    0.058    0.406
   .EEC3              0.393    0.107    3.683    0.000    0.184    0.602
   .EEF1              0.341    0.172    1.978    0.048    0.003    0.678
   .EEF2              0.513    0.244    2.105    0.035    0.035    0.991
   .EEF3              0.347    0.162    2.143    0.032    0.030    0.665
   .ADT1              0.202    0.086    2.347    0.019    0.033    0.370
   .ADT2              0.135    0.065    2.093    0.036    0.009    0.262
   .ADT3              0.268    0.086    3.106    0.002    0.099    0.437
   .IM1               0.106    0.053    1.998    0.046    0.002    0.210
   .IM2               0.277    0.088    3.138    0.002    0.104    0.450
   .IM3               0.356    0.129    2.754    0.006    0.103    0.609
    EEC               1.046    0.302    3.462    0.001    0.454    1.637
    EEF               0.526    0.290    1.810    0.070   -0.043    1.095
    ADT               2.108    0.517    4.078    0.000    1.095    3.121
    IM                1.179    0.364    3.243    0.001    0.467    1.892
   Std.lv  Std.all
    0.608    0.368
    0.232    0.122
    0.393    0.227
    0.341    0.393
    0.513    0.408
    0.347    0.395
    0.202    0.087
    0.135    0.057
    0.268    0.115
    0.106    0.082
    0.277    0.235
    0.356    0.256
    1.000    1.000
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.632
    EEC2              0.878
    EEC3              0.773
    EEF1              0.607
    EEF2              0.592
    EEF3              0.605
    ADT1              0.913
    ADT2              0.943
    ADT3              0.885
    IM1               0.918
    IM2               0.765
    IM3               0.744
lavaanPlot(model = fit1, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "grey"),
           coefs = T, stand=T)
#Construct Reliability:
semTools::compRelSEM(fit1, tau.eq=T, obs.var=T) #Cronbach Alpha
  EEC   EEF   ADT    IM 
0.905 0.815 0.970 0.928 
semTools::compRelSEM(fit1, tau.eq=F, obs.var=T) #Omega
  EEC   EEF   ADT    IM 
0.905 0.816 0.969 0.921 
AVE(fit1, obs.var = TRUE, omit.imps = c("no.conv", "no.se"),
    omit.factors = character(0), dropSingle = TRUE, return.df = TRUE) #AVE
  EEC   EEF   ADT    IM 
0.767 0.600 0.914 0.808 
#Standardized residuals
lavResiduals(fit1, type = "cor.bentler", custom.rmr = NULL,
             se = FALSE, zstat = TRUE, summary = TRUE, h1.acov = "unstructured",
             add.type = TRUE, add.labels = TRUE, add.class = TRUE,
             drop.list.single.group = TRUE,
             maximum.number = length(res.vech), output = "list")
$type
[1] "cor.bentler"

$cov
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.003  0.000                                                        
EEC3  0.019 -0.003  0.000                                                 
EEF1 -0.228 -0.033 -0.049  0.000                                          
EEF2 -0.049 -0.051  0.015  0.105  0.000                                   
EEF3  0.026  0.120  0.100 -0.022 -0.083  0.000                            
ADT1 -0.015 -0.045 -0.039 -0.125 -0.108  0.035  0.000                     
ADT2  0.025  0.029  0.011 -0.002  0.004  0.138  0.000  0.000              
ADT3  0.059 -0.021  0.023 -0.083  0.019  0.035  0.008 -0.005  0.000       
IM1   0.046  0.031  0.005 -0.093 -0.019  0.100 -0.072  0.052  0.027  0.000
IM2   0.012 -0.074 -0.085 -0.102  0.017  0.128 -0.113  0.053  0.007 -0.003
IM3   0.002  0.009 -0.089 -0.114  0.002  0.108 -0.095  0.042 -0.053 -0.007
        IM2    IM3
EEC1              
EEC2              
EEC3              
EEF1              
EEF2              
EEF3              
ADT1              
ADT2              
ADT3              
IM1               
IM2   0.000       
IM3   0.032  0.000

$cov.z
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.045  0.000                                                        
EEC3  0.283 -0.043  0.000                                                 
EEF1 -1.655 -0.418 -0.465  0.000                                          
EEF2 -0.652 -0.638  0.187  1.215  0.000                                   
EEF3  0.209  1.107  0.887 -0.181 -0.955  0.000                            
ADT1 -0.171 -0.611 -0.433 -1.534 -1.308  0.371  0.000                     
ADT2  0.276  0.426  0.128 -0.034  0.049  1.473  0.003  0.000              
ADT3  0.800 -0.262  0.309 -0.810  0.306  0.330  0.131 -0.117  0.000       
IM1   0.550  0.316  0.053 -0.745 -0.287  0.644 -0.768  0.596  0.303  0.000
IM2   0.129 -0.604 -0.674 -0.695  0.202  0.834 -0.927  0.518  0.077 -0.019
IM3   0.019  0.084 -0.790 -0.871  0.030  0.746 -1.035  0.512 -0.542 -0.051
        IM2    IM3
EEC1              
EEC2              
EEC3              
EEF1              
EEF2              
EEF3              
ADT1              
ADT2              
ADT3              
IM1               
IM2   0.000       
IM3   0.204  0.000

$summary
                           cov
srmr                     0.062
srmr.se                  0.038
srmr.exactfit.z          0.000
srmr.exactfit.pvalue     0.500
usrmr                    0.000
usrmr.se                 0.193
usrmr.ci.lower          -0.318
usrmr.ci.upper           0.318
usrmr.closefit.h0.value  0.050
usrmr.closefit.z        -0.259
usrmr.closefit.pvalue    0.602

Common method bias

Harman’s test

Factor Analysis using method =  minres
Call: fa(r = efa_data_good, nfactors = 1, rotate = "none")
Standardized loadings (pattern matrix) based upon correlation matrix
      MR1   h2   u2 com
IM1  0.87 0.76 0.24   1
IM2  0.77 0.60 0.40   1
IM3  0.76 0.58 0.42   1
EEF1 0.54 0.29 0.71   1
EEF2 0.61 0.37 0.63   1
EEF3 0.74 0.55 0.45   1
EEC1 0.67 0.45 0.55   1
EEC2 0.79 0.62 0.38   1
EEC3 0.73 0.54 0.46   1
ADT1 0.57 0.32 0.68   1
ADT2 0.69 0.48 0.52   1
ADT3 0.63 0.40 0.60   1

                MR1
SS loadings    5.96
Proportion Var 0.50

Mean item complexity =  1
Test of the hypothesis that 1 factor is sufficient.

df null model =  66  with the objective function =  12.29 with Chi Square =  751.43
df of  the model are 54  and the objective function was  6.23 

The root mean square of the residuals (RMSR) is  0.16 
The df corrected root mean square of the residuals is  0.17 

The harmonic n.obs is  67 with the empirical chi square  220.92  with prob <  4.6e-22 
The total n.obs was  67  with Likelihood Chi Square =  376.68  with prob <  6.5e-50 

Tucker Lewis Index of factoring reliability =  0.418
RMSEA index =  0.298  and the 90 % confidence intervals are  0.273 0.33
BIC =  149.63
Fit based upon off diagonal values = 0.91
Measures of factor score adequacy             
                                                   MR1
Correlation of (regression) scores with factors   0.97
Multiple R square of scores with factors          0.94
Minimum correlation of possible factor scores     0.87

CFA with one factor

model_substantive <- '
  EEC =~ EEC1 + EEC2 + EEC3
  EEF =~ EEF1 + EEF2 + EEF3
  ADT =~ ADT1 + ADT2 + ADT3
  IM  =~ IM1 + IM2 + IM3
'

# Fit the CFA model
fit_substantive <- cfa(model_substantive, data = efa_data_good, estimator = "MLR")

# Summary with fit measures and standardized estimates
summary(fit_substantive, fit.measures = TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 45 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                            67

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                96.871     105.097
  Degrees of freedom                                48          48
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.922
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               823.097     823.017
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.935       0.925
  Tucker-Lewis Index (TLI)                       0.911       0.896
                                                                  
  Robust Comparative Fit Index (CFI)                         0.930
  Robust Tucker-Lewis Index (TLI)                            0.904

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -943.149    -943.149
  Scaling correction factor                                  1.453
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -894.714    -894.714
  Scaling correction factor                                  1.126
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1946.299    1946.299
  Bayesian (BIC)                              2012.440    2012.440
  Sample-size adjusted Bayesian (SABIC)       1917.980    1917.980

Root Mean Square Error of Approximation:

  RMSEA                                          0.123       0.133
  90 Percent confidence interval - lower         0.087       0.097
  90 Percent confidence interval - upper         0.159       0.169
  P-value H_0: RMSEA <= 0.050                    0.001       0.000
  P-value H_0: RMSEA >= 0.080                    0.975       0.990
                                                                  
  Robust RMSEA                                               0.128
  90 Percent confidence interval - lower                     0.095
  90 Percent confidence interval - upper                     0.161
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.989

Standardized Root Mean Square Residual:

  SRMR                                           0.062       0.062

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.023    0.795
    EEC2              1.267    0.145    8.717    0.000    1.295    0.937
    EEC3              1.131    0.125    9.026    0.000    1.157    0.879
  EEF =~                                                                
    EEF1              1.000                               0.725    0.779
    EEF2              1.189    0.228    5.216    0.000    0.862    0.769
    EEF3              1.005    0.400    2.515    0.012    0.729    0.778
  ADT =~                                                                
    ADT1              1.000                               1.452    0.955
    ADT2              1.028    0.067   15.368    0.000    1.493    0.971
    ADT3              0.988    0.066   15.014    0.000    1.435    0.941
  IM =~                                                                 
    IM1               1.000                               1.086    0.958
    IM2               0.874    0.099    8.862    0.000    0.949    0.875
    IM3               0.936    0.076   12.314    0.000    1.017    0.863

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
    EEF               0.533    0.146    3.653    0.000    0.719    0.719
    ADT               0.570    0.260    2.193    0.028    0.384    0.384
    IM                0.801    0.261    3.069    0.002    0.721    0.721
  EEF ~~                                                                
    ADT               0.433    0.164    2.641    0.008    0.411    0.411
    IM                0.530    0.138    3.843    0.000    0.673    0.673
  ADT ~~                                                                
    IM                0.836    0.277    3.020    0.003    0.530    0.530

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.608    0.112    5.433    0.000    0.608    0.368
   .EEC2              0.232    0.089    2.617    0.009    0.232    0.122
   .EEC3              0.393    0.107    3.683    0.000    0.393    0.227
   .EEF1              0.341    0.172    1.978    0.048    0.341    0.393
   .EEF2              0.513    0.244    2.105    0.035    0.513    0.408
   .EEF3              0.347    0.162    2.143    0.032    0.347    0.395
   .ADT1              0.202    0.086    2.347    0.019    0.202    0.087
   .ADT2              0.135    0.065    2.093    0.036    0.135    0.057
   .ADT3              0.268    0.086    3.106    0.002    0.268    0.115
   .IM1               0.106    0.053    1.998    0.046    0.106    0.082
   .IM2               0.277    0.088    3.138    0.002    0.277    0.235
   .IM3               0.356    0.129    2.754    0.006    0.356    0.256
    EEC               1.046    0.302    3.462    0.001    1.000    1.000
    EEF               0.526    0.290    1.810    0.070    1.000    1.000
    ADT               2.108    0.517    4.078    0.000    1.000    1.000
    IM                1.179    0.364    3.243    0.001    1.000    1.000
# Inspect latent correlations
lavInspect(fit_substantive, "cor.lv")
      EEC   EEF   ADT    IM
EEC 1.000                  
EEF 0.719 1.000            
ADT 0.384 0.411 1.000      
IM  0.721 0.673 0.530 1.000
# Inspect latent variances (diagonal of covariance matrix)
cov_lv <- lavInspect(fit_substantive, "cov.lv")
diag(cov_lv)
      EEC       EEF       ADT        IM 
1.0455834 0.5255262 2.1080381 1.1794917 
# CFA with a marker-variable CMF
model_marker <- '
  # Substantive factors
  EEC =~ EEC1 + EEC2 + EEC3
  EEF =~ EEF1 + EEF2 + EEF3
  ADT =~ ADT1 + ADT2 + ADT3
  IM  =~ IM1 + IM2 + IM3

  # Common method factor (marker variable approach)
  CMF =~ EEC1 + EEF1 + ADT1 + IM1

  # Fix CMF variance for identification
  CMF ~~ 1*CMF
'

# Fit the model
fit_marker <- cfa(model_marker, data = efa_data_good, estimator = "MLR")
Warning: lavaan->lav_object_post_check():  
   some estimated ov variances are negative
Warning: lavaan->lav_object_post_check():  
   covariance matrix of latent variables is not positive definite ; use 
   lavInspect(fit, "cov.lv") to investigate.
# Summary with fit measures and standardized estimates
summary(fit_marker, fit.measures = TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 341 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        37

  Number of observations                            67

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                70.321      78.288
  Degrees of freedom                                41          41
  P-value (Chi-square)                           0.003       0.000
  Scaling correction factor                                  0.898
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               823.097     823.017
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.961       0.951
  Tucker-Lewis Index (TLI)                       0.938       0.921
                                                                  
  Robust Comparative Fit Index (CFI)                         0.956
  Robust Tucker-Lewis Index (TLI)                            0.929

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -929.874    -929.874
  Scaling correction factor                                  1.378
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -894.714    -894.714
  Scaling correction factor                                  1.126
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1933.748    1933.748
  Bayesian (BIC)                              2015.322    2015.322
  Sample-size adjusted Bayesian (SABIC)       1898.822    1898.822

Root Mean Square Error of Approximation:

  RMSEA                                          0.103       0.117
  90 Percent confidence interval - lower         0.060       0.074
  90 Percent confidence interval - upper         0.143       0.157
  P-value H_0: RMSEA <= 0.050                    0.025       0.008
  P-value H_0: RMSEA >= 0.080                    0.832       0.926
                                                                  
  Robust RMSEA                                               0.110
  90 Percent confidence interval - lower                     0.073
  90 Percent confidence interval - upper                     0.147
  P-value H_0: Robust RMSEA <= 0.050                         0.007
  P-value H_0: Robust RMSEA >= 0.080                         0.912

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.027    0.020
    EEC2             48.425  332.375    0.146    0.884    1.294    0.923
    EEC3             44.639  305.165    0.146    0.884    1.193    0.895
  EEF =~                                                                
    EEF1              1.000                               1.787    1.916
    EEF2              0.437    0.444    0.983    0.325    0.781    0.693
    EEF3              0.374    0.365    1.025    0.305    0.669    0.709
  ADT =~                                                                
    ADT1              1.000                               1.551    1.017
    ADT2              0.966    0.053   18.341    0.000    1.499    0.970
    ADT3              0.929    0.051   18.161    0.000    1.440    0.940
  IM =~                                                                 
    IM1               1.000                               0.802    0.698
    IM2               1.243    0.356    3.493    0.000    0.996    0.909
    IM3               1.294    0.325    3.982    0.000    1.038    0.872
  CMF =~                                                                
    EEC1              1.000                               1.000    0.760
    EEF1             -1.133    1.737   -0.652    0.514   -1.133   -1.215
    ADT1             -0.168    0.155   -1.084    0.278   -0.168   -0.110
    IM1               0.307    0.198    1.554    0.120    0.307    0.268

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
    EEF               0.044    0.323    0.135    0.892    0.916    0.916
    ADT               0.017    0.125    0.139    0.890    0.419    0.419
    IM                0.014    0.097    0.143    0.886    0.646    0.646
    CMF               0.027    0.186    0.145    0.885    1.007    1.007
  EEF ~~                                                                
    ADT               1.306    1.691    0.773    0.440    0.471    0.471
    IM                1.079    1.257    0.858    0.391    0.753    0.753
    CMF               1.475    1.757    0.839    0.401    0.825    0.825
  ADT ~~                                                                
    IM                0.669    0.235    2.848    0.004    0.538    0.538
    CMF               0.831    0.334    2.491    0.013    0.536    0.536
  IM ~~                                                                 
    CMF               0.693    0.168    4.118    0.000    0.865    0.865

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    CMF               1.000                               1.000    1.000
   .EEC1              0.678    0.144    4.725    0.000    0.678    0.391
   .EEC2              0.291    0.108    2.684    0.007    0.291    0.148
   .EEC3              0.355    0.101    3.514    0.000    0.355    0.200
   .EEF1             -0.265    0.883   -0.300    0.764   -0.265   -0.305
   .EEF2              0.661    0.187    3.531    0.000    0.661    0.520
   .EEF3              0.442    0.154    2.865    0.004    0.442    0.497
   .ADT1              0.170    0.071    2.407    0.016    0.170    0.073
   .ADT2              0.140    0.060    2.337    0.019    0.140    0.059
   .ADT3              0.272    0.082    3.331    0.001    0.272    0.116
   .IM1               0.155    0.051    3.040    0.002    0.155    0.117
   .IM2               0.209    0.078    2.666    0.008    0.209    0.174
   .IM3               0.338    0.115    2.955    0.003    0.338    0.239
    EEC               0.001    0.010    0.072    0.943    1.000    1.000
    EEF               3.194    6.002    0.532    0.595    1.000    1.000
    ADT               2.404    0.632    3.804    0.000    1.000    1.000
    IM                0.643    0.249    2.582    0.010    1.000    1.000
# Inspect latent correlations
lavInspect(fit_marker, "cor.lv")
      EEC   EEF   ADT    IM   CMF
EEC 1.000                        
EEF 0.916 1.000                  
ADT 0.419 0.471 1.000            
IM  0.646 0.753 0.538 1.000      
CMF 1.007 0.825 0.536 0.865 1.000
# Inspect latent variances
diag(lavInspect(fit_marker, "cov.lv"))
         EEC          EEF          ADT           IM          CMF 
0.0007140811 3.1943385481 2.4044230046 0.6429758039 1.0000000000 

SEM

SEM with two non-connected DVs

Warning: lavaan->lav_model_nvcov_bootstrap():  
   1 bootstrap runs failed or did not converge.
Warning: lavaan->lav_model_nvcov_bootstrap():  
   159 bootstrap runs resulted in nonadmissible solutions.
lavaan 0.6-19 ended normally after 41 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        29

  Number of observations                            67

Model Test User Model:
                                                      
  Test statistic                               158.030
  Degrees of freedom                                61
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                               836.264
  Degrees of freedom                                78
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.872
  Tucker-Lewis Index (TLI)                       0.836

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -967.145
  Loglikelihood unrestricted model (H1)       -888.130
                                                      
  Akaike (AIC)                                1992.291
  Bayesian (BIC)                              2056.227
  Sample-size adjusted Bayesian (SABIC)       1964.917

Root Mean Square Error of Approximation:

  RMSEA                                          0.154
  90 Percent confidence interval - lower         0.125
  90 Percent confidence interval - upper         0.184
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.269

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             5000
  Number of successful bootstrap draws            4999

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.005    0.791
    EEC2              1.244    0.155    8.012    0.000    1.249    0.919
    EEC3              1.152    0.144    8.015    0.000    1.157    0.893
  EEF =~                                                                
    EEF1              1.000                               0.686    0.779
    EEF2              1.206    0.285    4.226    0.000    0.828    0.780
    EEF3              0.917    0.390    2.351    0.019    0.629    0.702
  ADT =~                                                                
    ADT1              1.000                               1.461    0.961
    ADT2              1.016    0.065   15.585    0.000    1.484    0.965
    ADT3              0.984    0.070   14.127    0.000    1.437    0.942
  IM =~                                                                 
    IM1               1.000                               1.055    0.930
    IM2               0.924    0.093    9.936    0.000    0.975    0.898
    IM3               0.981    0.085   11.597    0.000    1.035    0.878

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.338    0.262   -1.290    0.197   -0.321   -0.160
  EEF ~                                                                 
    IM                0.293    0.115    2.546    0.011    0.450    0.450
    reward_2         -0.261    0.208   -1.256    0.209   -0.380   -0.190

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
   .EEF               0.280    0.109    2.571    0.010    0.474    0.474
    ADT               0.481    0.240    2.003    0.045    0.328    0.328

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.605    0.114    5.295    0.000    0.605    0.375
   .EEC2              0.289    0.132    2.178    0.029    0.289    0.156
   .EEC3              0.339    0.120    2.837    0.005    0.339    0.202
   .EEF1              0.305    0.121    2.522    0.012    0.305    0.393
   .EEF2              0.441    0.160    2.757    0.006    0.441    0.391
   .EEF3              0.407    0.156    2.605    0.009    0.407    0.507
   .ADT1              0.175    0.078    2.255    0.024    0.175    0.076
   .ADT2              0.163    0.062    2.641    0.008    0.163    0.069
   .ADT3              0.261    0.080    3.255    0.001    0.261    0.112
   .IM1               0.173    0.051    3.427    0.001    0.173    0.135
   .IM2               0.227    0.080    2.839    0.005    0.227    0.193
   .IM3               0.318    0.111    2.863    0.004    0.318    0.229
    EEC               1.009    0.272    3.707    0.000    1.000    1.000
   .EEF               0.345    0.196    1.764    0.078    0.734    0.734
    ADT               2.134    0.505    4.223    0.000    1.000    1.000
   .IM                1.083    0.353    3.070    0.002    0.974    0.974

SEM - only EEF

Warning: lavaan->lav_model_nvcov_bootstrap():  
   1 bootstrap runs failed or did not converge.
Warning: lavaan->lav_model_nvcov_bootstrap():  
   150 bootstrap runs resulted in nonadmissible solutions.
lavaan 0.6-19 ended normally after 37 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                            67

Model Test User Model:
                                                      
  Test statistic                                87.694
  Degrees of freedom                                33
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                               614.042
  Degrees of freedom                                45
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.904
  Tucker-Lewis Index (TLI)                       0.869

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -700.996
  Loglikelihood unrestricted model (H1)       -657.149
                                                      
  Akaike (AIC)                                1443.992
  Bayesian (BIC)                              1490.291
  Sample-size adjusted Bayesian (SABIC)       1424.169

Root Mean Square Error of Approximation:

  RMSEA                                          0.157
  90 Percent confidence interval - lower         0.118
  90 Percent confidence interval - upper         0.198
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    0.999

Standardized Root Mean Square Residual:

  SRMR                                           0.232

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             5000
  Number of successful bootstrap draws            4999

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               0.761    0.817
    EEF2              1.205    0.300    4.019    0.000    0.917    0.818
    EEF3              0.875    0.374    2.337    0.019    0.665    0.710
  ADT =~                                                                
    ADT1              1.000                               1.463    0.962
    ADT2              1.014    0.063   15.994    0.000    1.483    0.964
    ADT3              0.983    0.069   14.219    0.000    1.437    0.942
  IM =~                                                                 
    IM1               1.000                               1.060    0.935
    IM2               0.915    0.094    9.702    0.000    0.970    0.894
    IM3               0.974    0.084   11.646    0.000    1.033    0.876

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.340    0.264   -1.286    0.198   -0.320   -0.160
  EEF ~                                                                 
    IM                0.440    0.134    3.287    0.001    0.613    0.613
    reward_2         -0.222    0.206   -1.082    0.279   -0.292   -0.146

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.288    0.129    2.224    0.026    0.288    0.332
   .EEF2              0.416    0.156    2.662    0.008    0.416    0.331
   .EEF3              0.436    0.157    2.785    0.005    0.436    0.496
   .ADT1              0.171    0.076    2.244    0.025    0.171    0.074
   .ADT2              0.167    0.063    2.639    0.008    0.167    0.070
   .ADT3              0.262    0.080    3.285    0.001    0.262    0.113
   .IM1               0.162    0.049    3.301    0.001    0.162    0.126
   .IM2               0.236    0.077    3.051    0.002    0.236    0.200
   .IM3               0.323    0.113    2.858    0.004    0.323    0.232
   .EEF               0.332    0.186    1.785    0.074    0.574    0.574
    ADT               2.139    0.504    4.241    0.000    1.000    1.000
   .IM                1.095    0.351    3.117    0.002    0.974    0.974

SEM - only EEC

Warning: lavaan->lav_model_nvcov_bootstrap():  
   339 bootstrap runs resulted in nonadmissible solutions.
lavaan 0.6-19 ended normally after 35 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                            67

Model Test User Model:
                                                      
  Test statistic                                71.031
  Degrees of freedom                                33
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                               669.268
  Degrees of freedom                                45
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.939
  Tucker-Lewis Index (TLI)                       0.917

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -723.442
  Loglikelihood unrestricted model (H1)       -687.926
                                                      
  Akaike (AIC)                                1488.884
  Bayesian (BIC)                              1535.182
  Sample-size adjusted Bayesian (SABIC)       1469.061

Root Mean Square Error of Approximation:

  RMSEA                                          0.131
  90 Percent confidence interval - lower         0.089
  90 Percent confidence interval - upper         0.173
  P-value H_0: RMSEA <= 0.050                    0.002
  P-value H_0: RMSEA >= 0.080                    0.975

Standardized Root Mean Square Residual:

  SRMR                                           0.232

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             5000
  Number of successful bootstrap draws            5000

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.038    0.807
    EEC2              1.241    0.158    7.857    0.000    1.287    0.932
    EEC3              1.113    0.129    8.614    0.000    1.155    0.878
  ADT =~                                                                
    ADT1              1.000                               1.463    0.962
    ADT2              1.014    0.063   15.995    0.000    1.483    0.964
    ADT3              0.983    0.069   14.220    0.000    1.437    0.942
  IM =~                                                                 
    IM1               1.000                               1.088    0.960
    IM2               0.870    0.109    7.947    0.000    0.946    0.872
    IM3               0.934    0.091   10.299    0.000    1.016    0.862

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.345    0.269   -1.285    0.199   -0.317   -0.159
  EEC ~                                                                 
    IM                0.694    0.092    7.551    0.000    0.728    0.728
    reward_2          0.060    0.197    0.303    0.762    0.058    0.029

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.577    0.107    5.368    0.000    0.577    0.349
   .EEC2              0.253    0.102    2.479    0.013    0.253    0.132
   .EEC3              0.397    0.113    3.513    0.000    0.397    0.229
   .ADT1              0.171    0.076    2.244    0.025    0.171    0.074
   .ADT2              0.167    0.063    2.640    0.008    0.167    0.070
   .ADT3              0.262    0.080    3.285    0.001    0.262    0.113
   .IM1               0.102    0.058    1.750    0.080    0.102    0.079
   .IM2               0.281    0.087    3.217    0.001    0.281    0.239
   .IM3               0.357    0.129    2.757    0.006    0.357    0.257
   .EEC               0.513    0.157    3.259    0.001    0.477    0.477
    ADT               2.139    0.504    4.241    0.000    1.000    1.000
   .IM                1.154    0.352    3.273    0.001    0.975    0.975

SEM with partial mediation EEF -> EEC

Warning: lavaan->lav_model_nvcov_bootstrap():  
   6 bootstrap runs failed or did not converge.
Warning: lavaan->lav_model_nvcov_bootstrap():  
   299 bootstrap runs resulted in nonadmissible solutions.
lavaan 0.6-19 ended normally after 44 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        31

  Number of observations                            67

Model Test User Model:
                                                      
  Test statistic                               126.396
  Degrees of freedom                                59
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                               836.264
  Degrees of freedom                                78
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.911
  Tucker-Lewis Index (TLI)                       0.882

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -951.328
  Loglikelihood unrestricted model (H1)       -888.130
                                                      
  Akaike (AIC)                                1964.657
  Bayesian (BIC)                              2033.002
  Sample-size adjusted Bayesian (SABIC)       1935.394

Root Mean Square Error of Approximation:

  RMSEA                                          0.131
  90 Percent confidence interval - lower         0.099
  90 Percent confidence interval - upper         0.162
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    0.995

Standardized Root Mean Square Residual:

  SRMR                                           0.207

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             5000
  Number of successful bootstrap draws            4994

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.015    0.794
    EEC2              1.261    0.169    7.455    0.000    1.280    0.933
    EEC3              1.133    0.132    8.574    0.000    1.150    0.880
  EEF =~                                                                
    EEF1              1.000                               0.745    0.800
    EEF2              1.196    0.278    4.306    0.000    0.891    0.795
    EEF3              0.938    0.420    2.231    0.026    0.698    0.745
  ADT =~                                                                
    ADT1              1.000                               1.463    0.962
    ADT2              1.013    0.063   15.991    0.000    1.482    0.964
    ADT3              0.982    0.069   14.219    0.000    1.437    0.942
  IM =~                                                                 
    IM1               1.000                               1.082    0.954
    IM2               0.880    0.107    8.220    0.000    0.952    0.877
    IM3               0.943    0.090   10.475    0.000    1.021    0.866

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward_2         -0.344    0.268   -1.286    0.198   -0.318   -0.159
  EEF ~                                                                 
    IM                0.435    0.128    3.404    0.001    0.632    0.632
    reward_2         -0.201    0.208   -0.964    0.335   -0.269   -0.135
  EEC ~                                                                 
    IM                0.424    0.180    2.360    0.018    0.452    0.452
    EEF               0.575    0.644    0.893    0.372    0.422    0.422
    reward_2          0.184    0.192    0.954    0.340    0.181    0.090

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
    ADT               0.039    0.157    0.246    0.805    0.042    0.042

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.605    0.111    5.426    0.000    0.605    0.370
   .EEC2              0.242    0.098    2.475    0.013    0.242    0.129
   .EEC3              0.385    0.109    3.525    0.000    0.385    0.225
   .EEF1              0.311    0.129    2.416    0.016    0.311    0.359
   .EEF2              0.462    0.171    2.705    0.007    0.462    0.368
   .EEF3              0.391    0.155    2.526    0.012    0.391    0.445
   .ADT1              0.170    0.076    2.236    0.025    0.170    0.074
   .ADT2              0.167    0.064    2.630    0.009    0.167    0.071
   .ADT3              0.262    0.080    3.280    0.001    0.262    0.113
   .IM1               0.115    0.055    2.087    0.037    0.115    0.090
   .IM2               0.271    0.083    3.248    0.001    0.271    0.230
   .IM3               0.348    0.124    2.803    0.005    0.348    0.250
   .EEC               0.403    0.134    3.002    0.003    0.392    0.392
   .EEF               0.308    0.181    1.702    0.089    0.555    0.555
    ADT               2.140    0.504    4.247    0.000    1.000    1.000
   .IM                1.141    0.351    3.251    0.001    0.975    0.975

ANOVA on moderators