STUDY 2 PLOT
plot_model(m1.2, type = "pred", terms = c("lin","pDvR", "fDvR"))
## Warning: Using `$` in model formulas can produce unexpected results. Specify your
## model using the `data` argument instead.
## Try: value ~ (lin + quad) +
## ((pDvR + pIvP) * (fDvR + fCvP)) + (NUC2.bind + NUC2.Indiv) * (fDvR +
## fCvP) + lin * ((pDvR + pIvP) * (fDvR + fCvP)), data =
## Warning: Using `$` in model formulas can produce unexpected results. Specify your
## model using the `data` argument instead.
## Try: value ~ (lin + quad) +
## ((pDvR + pIvP) * (fDvR + fCvP)) + (NUC2.bind + NUC2.Indiv) * (fDvR +
## fCvP) + lin * ((pDvR + pIvP) * (fDvR + fCvP)), data =

#interaction terms as vareable for model
d2$pDvRxfDvR <-d2$pDvR*d2$fDvR
d2$pDvRxfCVP <-d2$pDvR*d2$fCvP
d2$pIVPxfDvR <-d2$pIvP*d2$fDvR
d2$pIVPxfCvP <-d2$pIvP*d2$fCvP
d2$fDvRxbind <-d2$NUC2.bind*d2$fDvR
d2$fCvpxbind <-d2$NUC2.bind*d2$fCvP
d2$fDvRxindiv <-d2$NUC2.Indiv*d2$fDvR
d2$fCvpindiv <-d2$NUC2.Indiv*d2$fCvP
d2$pDvRxbind <-d2$NUC2.bind*d2$pDvR
d2$pDvRxindiv <-d2$NUC2.Indiv*d2$pDvR
d2$pIvpxbind <-d2$NUC2.bind*d2$pIvP
d2$pIvpxindiv <-d2$NUC2.Indiv*d2$pIvP
d2$linxfDvR <-d2$lin*d2$fDvR
d2$linxfCVP <-d2$lin*d2$fCvP
d2$pDvRxlin <-d2$pDvR*d2$lin
d2$pIVPxlin <-d2$pIvP*d2$lin
d2$linxpDvRxfDvR <-d2$pDvR*d2$fDvR*d2$lin
d2$linxpDvRxfCVP <-d2$pDvR*d2$fCvP*d2$lin
d2$linxpIvPxfDvR <-d2$pIvP*d2$fDvR*d2$lin
d2$linxpIvPxfCVP <-d2$pIvP*d2$fCvP*d2$lin
plot.1 <- lmer(value ~ (pDvRxfDvR +lin+ quad + pDvR + pIvP + fDvR + fCvP + NUC2.bind+ NUC2.Indiv + pDvRxfCVP + pIVPxfDvR + pIVPxfCvP + fDvRxbind + fCvpxbind + fDvRxindiv + fCvpindiv + pDvRxlin + pIVPxlin + linxfDvR + linxfCVP + linxpDvRxfDvR +linxpDvRxfCVP + linxpIvPxfDvR + linxpIvPxfCVP+ (1|NUC2.ID)) , data = d2)
summary(plot.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ (pDvRxfDvR + lin + quad + pDvR + pIvP + fDvR + fCvP +
## NUC2.bind + NUC2.Indiv + pDvRxfCVP + pIVPxfDvR + pIVPxfCvP +
## fDvRxbind + fCvpxbind + fDvRxindiv + fCvpindiv + pDvRxlin +
## pIVPxlin + linxfDvR + linxfCVP + linxpDvRxfDvR + linxpDvRxfCVP +
## linxpIvPxfDvR + linxpIvPxfCVP + (1 | NUC2.ID))
## Data: d2
##
## REML criterion at convergence: 9456.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6189 -0.4843 -0.1048 0.4083 5.2690
##
## Random effects:
## Groups Name Variance Std.Dev.
## NUC2.ID (Intercept) 1.7545 1.3246
## Residual 0.7206 0.8489
## Number of obs: 2931, groups: NUC2.ID, 977
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.24736 0.34491 969.99307 -3.616 0.000314 ***
## pDvRxfDvR 0.76498 0.29933 961.99994 2.556 0.010752 *
## lin -0.92211 0.04105 1944.00002 -22.464 < 2e-16 ***
## quad 0.30553 0.09978 1944.00003 3.062 0.002229 **
## pDvR 0.63567 0.12210 961.99993 5.206 2.36e-07 ***
## pIvP -0.10327 0.10359 961.99994 -0.997 0.319078
## fDvR -0.36044 0.87124 961.99995 -0.414 0.679182
## fCvP 0.06891 0.70497 961.99997 0.098 0.922152
## NUC2.bind 0.66650 0.07859 961.99990 8.481 < 2e-16 ***
## NUC2.Indiv -0.63289 0.09719 961.99987 -6.512 1.19e-10 ***
## pDvRxfCVP -0.39417 0.25881 961.99994 -1.523 0.128079
## pIVPxfDvR -0.01448 0.24945 961.99994 -0.058 0.953732
## pIVPxfCvP 0.31896 0.22341 961.99994 1.428 0.153710
## fDvRxbind 0.25652 0.19063 961.99995 1.346 0.178733
## fCvpxbind -0.02017 0.16831 961.99995 -0.120 0.904623
## fDvRxindiv -0.12060 0.23475 961.99994 -0.514 0.607568
## fCvpindiv -0.06883 0.20900 961.99997 -0.329 0.741974
## pDvRxlin -0.20538 0.09973 1944.00002 -2.059 0.039587 *
## pIVPxlin 0.05012 0.08778 1944.00002 0.571 0.568053
## linxfDvR -0.10861 0.10000 1944.00002 -1.086 0.277542
## linxfCVP 0.18536 0.08755 1944.00002 2.117 0.034370 *
## linxpDvRxfDvR -0.49096 0.24575 1944.00002 -1.998 0.045877 *
## linxpDvRxfCVP 0.14534 0.21028 1944.00002 0.691 0.489549
## linxpIvPxfDvR -0.13569 0.21142 1944.00002 -0.642 0.521069
## linxpIvPxfCVP 0.24348 0.18926 1944.00002 1.287 0.198412
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 25 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
tab_model(plot.1, show.std = T)
Â
|
value
|
Predictors
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
(Intercept)
|
-1.25
|
-0.00
|
-1.92 – -0.57
|
-0.05 – 0.05
|
<0.001
|
pDvRxfDvR
|
0.76
|
0.08
|
0.18 – 1.35
|
0.02 – 0.14
|
0.011
|
lin
|
-0.92
|
-0.22
|
-1.00 – -0.84
|
-0.24 – -0.20
|
<0.001
|
quad
|
0.31
|
0.03
|
0.11 – 0.50
|
0.01 – 0.05
|
0.002
|
pDvR
|
0.64
|
0.15
|
0.40 – 0.88
|
0.09 – 0.20
|
<0.001
|
pIvP
|
-0.10
|
-0.03
|
-0.31 – 0.10
|
-0.08 – 0.03
|
0.319
|
fDvR
|
-0.36
|
-0.09
|
-2.07 – 1.35
|
-0.49 – 0.32
|
0.679
|
fCvP
|
0.07
|
0.02
|
-1.31 – 1.45
|
-0.36 – 0.40
|
0.922
|
NUC2 bind
|
0.67
|
0.27
|
0.51 – 0.82
|
0.20 – 0.33
|
<0.001
|
NUC2 Indiv
|
-0.63
|
-0.20
|
-0.82 – -0.44
|
-0.26 – -0.14
|
<0.001
|
pDvRxfCVP
|
-0.39
|
-0.05
|
-0.90 – 0.11
|
-0.11 – 0.01
|
0.128
|
pIVPxfDvR
|
-0.01
|
-0.00
|
-0.50 – 0.47
|
-0.06 – 0.05
|
0.954
|
pIVPxfCvP
|
0.32
|
0.04
|
-0.12 – 0.76
|
-0.01 – 0.09
|
0.153
|
fDvRxbind
|
0.26
|
0.21
|
-0.12 – 0.63
|
-0.09 – 0.51
|
0.179
|
fCvpxbind
|
-0.02
|
-0.02
|
-0.35 – 0.31
|
-0.32 – 0.29
|
0.905
|
fDvRxindiv
|
-0.12
|
-0.11
|
-0.58 – 0.34
|
-0.55 – 0.32
|
0.607
|
fCvpindiv
|
-0.07
|
-0.07
|
-0.48 – 0.34
|
-0.52 – 0.37
|
0.742
|
pDvRxlin
|
-0.21
|
-0.02
|
-0.40 – -0.01
|
-0.04 – -0.00
|
0.040
|
pIVPxlin
|
0.05
|
0.01
|
-0.12 – 0.22
|
-0.01 – 0.02
|
0.568
|
linxfDvR
|
-0.11
|
-0.01
|
-0.30 – 0.09
|
-0.03 – 0.01
|
0.277
|
linxfCVP
|
0.19
|
0.02
|
0.01 – 0.36
|
0.00 – 0.04
|
0.034
|
linxpDvRxfDvR
|
-0.49
|
-0.02
|
-0.97 – -0.01
|
-0.04 – -0.00
|
0.046
|
linxpDvRxfCVP
|
0.15
|
0.01
|
-0.27 – 0.56
|
-0.01 – 0.03
|
0.490
|
linxpIvPxfDvR
|
-0.14
|
-0.01
|
-0.55 – 0.28
|
-0.02 – 0.01
|
0.521
|
linxpIvPxfCVP
|
0.24
|
0.01
|
-0.13 – 0.61
|
-0.01 – 0.03
|
0.198
|
Random Effects
|
σ2
|
0.72
|
τ00 NUC2.ID
|
1.75
|
ICC
|
0.71
|
N NUC2.ID
|
977
|
Observations
|
2931
|
Marginal R2 / Conditional R2
|
0.160 / 0.756
|
fp <- plot_model(
plot.1,
type = "std",
ci.style = "bar",
show.values = TRUE,
value.size = 6, # Bigger numeric labels
axis.labels = c(
"Three-way interaction of linear effect of casualties with Democrat vs. Republican identity and Democrat vs. Republican framed conditions",
"Interaction of linear effect of casualties Democrat vs. Republican identity",
"Independents vs. other identities x neutral frame vs. other conditions",
"Independents vs. other identities x Democrat vs. Republican framed conditions",
"Democrat vs. Republican identity x neutral frame vs. other conditions",
"Individualizing Foundation Vigilance",
"Binding Foundation Vigilance",
"Framing condition (Neutral framed vs. Democrat or Republican framed)",
"Framing condition (Democrat framed vs. Republican framed)",
"Party Identity (Independents vs. other identities)",
"Party Identity (Democrat vs. Republican)",
"Linear",
"Democrat vs. Republican identity x Democrat vs. Republican framed conditions"
),
terms = c(
"pDvRxfDvR", "lin", "pDvR", "pIvP", "fDvR", "fCvP",
"NUC2.bind", "NUC2.Indiv", "pDvRxfCVP", "pIVPxfDvR",
"pIVPxfCvP", "pDvRxlin", "linxpDvRxfDvR"
),
value.offset = 0.35,
wrap.labels = 48,
axis.lim = c(-1, 1),
p.threshold = c(0.05, 0.01, 0.001),
vline.color = NA # Remove default dashed 0-line
)
fp <- fp +
theme_sjplot() +
geom_point(shape = 19, size = 2, color = "darkred") +
scale_color_manual(values = c("black", "black")) +
labs(
y = "Standardized Beta Values",
title = "Study 2 - Effect Estimates in Model of Nuclear Endorsement"
) +
geom_vline(xintercept = 0, linetype = "solid", color = "black", size = 1.2) + # Bold solid 0-line
theme(
axis.text.y = element_text(size = 18, colour = "black"),
axis.text.x = element_text(size = 18, colour = "black"),
axis.title.x = element_text(size = 19),
plot.title = element_text(size = 16, face = "bold")
)
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
fp

ggsave("fp2.jpg", plot = fp , width = 10, height =10, dpi = 400)
###axis.labels = c("Three-way interaction of linear effect of casualties with Democrat vs. Republican identity and Democrat vs. Republican framed conditions", "Interaction of linear effect of casualties Democrat vs. Republican identity ","Interaction of Independents vs. other identities with neutral frame vs. other conditions","Interaction of Independents vs. other identities with Democrat vs. Republican framed conditions","Interaction of Democrat vs. Republican identity with neutral frame vs. other conditions ","Interaction of Democrat vs. Republican identity with Democrat vs. Republican framed conditions","Individualizing Foundation Vigilance","Binding Foundation Vigilance ","Framing condition (Neutral framed vs. Democrat or Republican framed)", "Framing condition (Democrat framed vs. Republican framed)","Party Identity (Independents vs. other identities)","Party Identity (Democrat vs. Republican)","linear"),
part2<- d2[(d2$pIvP < .5 ),]
m1.2 <- lmer(d2$value~ (lin+quad)+ (matchvsmismatch)* ((pDvR) +(NUC2.bind+ NUC2.Indiv))+ lin*(pDvR)+ (1|NUC2.ID),data = d2)
summary(m1.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: d2$value ~ (lin + quad) + (matchvsmismatch) * ((pDvR) + (NUC2.bind +
## NUC2.Indiv)) + lin * (pDvR) + (1 | NUC2.ID)
## Data: d2
##
## REML criterion at convergence: 9451.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5412 -0.5119 -0.1093 0.4106 5.3963
##
## Random effects:
## Groups Name Variance Std.Dev.
## NUC2.ID (Intercept) 1.7623 1.3275
## Residual 0.7224 0.8499
## Number of obs: 2931, groups: NUC2.ID, 977
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.18790 0.34215 977.20359 -3.472 0.000539
## lin -0.92011 0.04101 1951.00003 -22.437 < 2e-16
## quad 0.30553 0.09991 1951.00003 3.058 0.002258
## matchvsmismatch 0.87305 1.05591 968.99989 0.827 0.408541
## pDvR 0.60210 0.11844 968.99993 5.083 4.45e-07
## NUC2.bind 0.65716 0.07767 968.99985 8.461 < 2e-16
## NUC2.Indiv -0.64052 0.09685 968.99981 -6.614 6.19e-11
## matchvsmismatch:pDvR -0.03255 0.30356 968.99993 -0.107 0.914644
## matchvsmismatch:NUC2.bind 0.21828 0.22466 968.99986 0.972 0.331481
## matchvsmismatch:NUC2.Indiv -0.30419 0.28711 968.99979 -1.059 0.289649
## lin:pDvR -0.19477 0.09696 1951.00003 -2.009 0.044706
##
## (Intercept) ***
## lin ***
## quad **
## matchvsmismatch
## pDvR ***
## NUC2.bind ***
## NUC2.Indiv ***
## matchvsmismatch:pDvR
## matchvsmismatch:NUC2.bind
## matchvsmismatch:NUC2.Indiv
## lin:pDvR *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) lin quad mtchvs pDvR NUC2.b NUC2.I mtc:DR mt:NUC2.
## lin 0.000
## quad 0.065 0.000
## mtchvsmsmtc -0.060 0.000 0.000
## pDvR 0.058 0.000 0.000 -0.030
## NUC2.bind -0.222 0.000 0.000 0.005 -0.257
## NUC2.Indiv -0.734 0.000 0.000 0.043 0.167 -0.486
## mtchvsms:DR -0.031 0.000 0.000 0.090 -0.035 0.019 0.010
## mtchv:NUC2. 0.011 0.000 0.000 -0.262 0.022 -0.015 0.003 -0.297
## mtch:NUC2.I 0.042 0.000 0.000 -0.749 0.008 0.007 -0.039 0.165 -0.432
## lin:pDvR 0.000 0.347 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## m:NUC2.I
## lin
## quad
## mtchvsmsmtc
## pDvR
## NUC2.bind
## NUC2.Indiv
## mtchvsms:DR
## mtchv:NUC2.
## mtch:NUC2.I
## lin:pDvR 0.000
tab_model(m1.2)
Â
|
d2$value
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.19
|
-1.86 – -0.52
|
0.001
|
lin
|
-0.92
|
-1.00 – -0.84
|
<0.001
|
quad
|
0.31
|
0.11 – 0.50
|
0.002
|
matchvsmismatch
|
0.87
|
-1.20 – 2.94
|
0.408
|
pDvR
|
0.60
|
0.37 – 0.83
|
<0.001
|
NUC2 bind
|
0.66
|
0.50 – 0.81
|
<0.001
|
NUC2 Indiv
|
-0.64
|
-0.83 – -0.45
|
<0.001
|
matchvsmismatch × pDvR
|
-0.03
|
-0.63 – 0.56
|
0.915
|
matchvsmismatch × NUC2 bind
|
0.22
|
-0.22 – 0.66
|
0.331
|
matchvsmismatch × NUC2 Indiv
|
-0.30
|
-0.87 – 0.26
|
0.289
|
lin × pDvR
|
-0.19
|
-0.38 – -0.00
|
0.045
|
Random Effects
|
σ2
|
0.72
|
τ00 NUC2.ID
|
1.76
|
ICC
|
0.71
|
N NUC2.ID
|
977
|
Observations
|
2931
|
Marginal R2 / Conditional R2
|
0.153 / 0.754
|
m1.2 <- lmer(value~ (lin+quad) + ((pDvR + pIvP)*(fDvR + fCvP)) * (NUC2.bind + NUC2.Indiv) + lin*((pDvR + pIvP)*(fDvR + fCvP)) + (1|NUC2.ID),data = d2)
summary(m1.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ (lin + quad) + ((pDvR + pIvP) * (fDvR + fCvP)) * (NUC2.bind +
## NUC2.Indiv) + lin * ((pDvR + pIvP) * (fDvR + fCvP)) + (1 | NUC2.ID)
## Data: d2
##
## REML criterion at convergence: 9439.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5471 -0.4874 -0.1055 0.4019 5.2578
##
## Random effects:
## Groups Name Variance Std.Dev.
## NUC2.ID (Intercept) 1.7373 1.3181
## Residual 0.7206 0.8489
## Number of obs: 2931, groups: NUC2.ID, 977
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.42956 0.36971 956.86560 -3.867 0.000118 ***
## lin -0.92211 0.04105 1944.00002 -22.464 < 2e-16 ***
## quad 0.30553 0.09978 1944.00002 3.062 0.002229 **
## pDvR -0.06407 0.91331 950.00007 -0.070 0.944089
## pIvP -1.49814 0.77467 949.99988 -1.934 0.053422 .
## fDvR -0.52068 0.94272 950.00010 -0.552 0.580860
## fCvP 0.23066 0.74778 949.99988 0.308 0.757796
## NUC2.bind 0.66736 0.09148 949.99989 7.296 6.27e-13 ***
## NUC2.Indiv -0.58143 0.10749 950.00001 -5.409 8.01e-08 ***
## pDvR:fDvR 0.57981 2.37806 950.00015 0.244 0.807424
## pDvR:fCvP 0.02849 1.80717 949.99984 0.016 0.987425
## pIvP:fDvR 1.85096 1.93833 949.99980 0.955 0.339859
## pIvP:fCvP 2.16408 1.60724 949.99988 1.346 0.178476
## pDvR:NUC2.bind -0.12596 0.23108 949.99995 -0.545 0.585812
## pDvR:NUC2.Indiv 0.30415 0.27247 950.00019 1.116 0.264579
## pIvP:NUC2.bind 0.37089 0.18778 949.99991 1.975 0.048549 *
## pIvP:NUC2.Indiv 0.03893 0.21979 949.99992 0.177 0.859465
## fDvR:NUC2.bind 0.45568 0.21722 949.99993 2.098 0.036191 *
## fDvR:NUC2.Indiv -0.26913 0.26085 950.00013 -1.032 0.302454
## fCvP:NUC2.bind 0.10513 0.19980 949.99985 0.526 0.598896
## fCvP:NUC2.Indiv -0.23977 0.23012 949.99986 -1.042 0.297697
## lin:pDvR -0.20538 0.09973 1944.00002 -2.059 0.039587 *
## lin:pIvP 0.05012 0.08778 1944.00002 0.571 0.568053
## lin:fDvR -0.10861 0.10000 1944.00002 -1.086 0.277542
## lin:fCvP 0.18536 0.08755 1944.00002 2.117 0.034370 *
## pDvR:fDvR:NUC2.bind 1.05128 0.54800 949.99992 1.918 0.055358 .
## pDvR:fDvR:NUC2.Indiv -0.89176 0.66668 950.00009 -1.338 0.181346
## pDvR:fCvP:NUC2.bind 0.89725 0.50532 949.99982 1.776 0.076116 .
## pDvR:fCvP:NUC2.Indiv -0.93273 0.57861 949.99979 -1.612 0.107294
## pIvP:fDvR:NUC2.bind -0.24936 0.44660 949.99986 -0.558 0.576739
## pIvP:fDvR:NUC2.Indiv -0.23411 0.52824 949.99981 -0.443 0.657726
## pIvP:fCvP:NUC2.bind -1.02937 0.40961 949.99986 -2.513 0.012133 *
## pIvP:fCvP:NUC2.Indiv 0.42404 0.47485 949.99992 0.893 0.372082
## lin:pDvR:fDvR -0.49096 0.24575 1944.00002 -1.998 0.045877 *
## lin:pDvR:fCvP 0.14534 0.21028 1944.00002 0.691 0.489549
## lin:pIvP:fDvR -0.13569 0.21142 1944.00002 -0.642 0.521069
## lin:pIvP:fCvP 0.24348 0.18926 1944.00002 1.287 0.198412
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 37 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
tab_model(m1.2, show.std = T)
Â
|
value
|
Predictors
|
Estimates
|
std. Beta
|
CI
|
standardized CI
|
p
|
std. p
|
(Intercept)
|
-1.43
|
0.01
|
-2.15 – -0.70
|
-0.05 – 0.06
|
<0.001
|
0.819
|
lin
|
-0.92
|
-0.21
|
-1.00 – -0.84
|
-0.23 – -0.20
|
<0.001
|
<0.001
|
quad
|
0.31
|
0.03
|
0.11 – 0.50
|
0.01 – 0.05
|
0.002
|
0.002
|
pDvR
|
-0.06
|
0.17
|
-1.85 – 1.73
|
0.10 – 0.23
|
0.944
|
<0.001
|
pIvP
|
-1.50
|
-0.03
|
-3.02 – 0.02
|
-0.09 – 0.02
|
0.053
|
0.228
|
fDvR
|
-0.52
|
-0.04
|
-2.37 – 1.33
|
-0.09 – 0.02
|
0.581
|
0.160
|
fCvP
|
0.23
|
-0.08
|
-1.24 – 1.70
|
-0.13 – -0.02
|
0.758
|
0.005
|
NUC2 bind
|
0.67
|
0.27
|
0.49 – 0.85
|
0.20 – 0.33
|
<0.001
|
<0.001
|
NUC2 Indiv
|
-0.58
|
-0.20
|
-0.79 – -0.37
|
-0.26 – -0.14
|
<0.001
|
<0.001
|
pDvR × fDvR
|
0.58
|
0.05
|
-4.08 – 5.24
|
-0.01 – 0.11
|
0.807
|
0.088
|
pDvR × fCvP
|
0.03
|
-0.07
|
-3.51 – 3.57
|
-0.13 – -0.01
|
0.987
|
0.019
|
pIvP × fDvR
|
1.85
|
0.01
|
-1.95 – 5.65
|
-0.04 – 0.07
|
0.340
|
0.642
|
pIvP × fCvP
|
2.16
|
0.05
|
-0.99 – 5.32
|
-0.00 – 0.11
|
0.178
|
0.059
|
pDvR × NUC2 bind
|
-0.13
|
-0.02
|
-0.58 – 0.33
|
-0.09 – 0.05
|
0.586
|
0.595
|
pDvR × NUC2 Indiv
|
0.30
|
0.04
|
-0.23 – 0.84
|
-0.03 – 0.10
|
0.264
|
0.267
|
pIvP × NUC2 bind
|
0.37
|
0.07
|
0.00 – 0.74
|
0.00 – 0.13
|
0.048
|
0.048
|
pIvP × NUC2 Indiv
|
0.04
|
0.01
|
-0.39 – 0.47
|
-0.06 – 0.07
|
0.859
|
0.865
|
fDvR × NUC2 bind
|
0.46
|
0.05
|
0.03 – 0.88
|
-0.01 – 0.11
|
0.036
|
0.104
|
fDvR × NUC2 Indiv
|
-0.27
|
-0.02
|
-0.78 – 0.24
|
-0.08 – 0.04
|
0.302
|
0.595
|
fCvP × NUC2 bind
|
0.11
|
0.00
|
-0.29 – 0.50
|
-0.06 – 0.07
|
0.599
|
0.891
|
fCvP × NUC2 Indiv
|
-0.24
|
-0.02
|
-0.69 – 0.21
|
-0.08 – 0.04
|
0.298
|
0.559
|
lin × pDvR
|
-0.21
|
-0.02
|
-0.40 – -0.01
|
-0.04 – -0.00
|
0.040
|
0.037
|
lin × pIvP
|
0.05
|
0.01
|
-0.12 – 0.22
|
-0.01 – 0.02
|
0.568
|
0.575
|
lin × fDvR
|
-0.11
|
-0.00
|
-0.30 – 0.09
|
-0.02 – 0.02
|
0.277
|
0.751
|
lin × fCvP
|
0.19
|
0.02
|
0.01 – 0.36
|
-0.00 – 0.04
|
0.034
|
0.062
|
(pDvR × fDvR) × NUC2 bind
|
1.05
|
0.07
|
-0.02 – 2.13
|
-0.00 – 0.14
|
0.055
|
0.055
|
(pDvR × fDvR) × NUC2 Indiv
|
-0.89
|
-0.05
|
-2.20 – 0.42
|
-0.11 – 0.02
|
0.181
|
0.181
|
(pDvR × fCvP) × NUC2 bind
|
0.90
|
0.07
|
-0.09 – 1.89
|
-0.01 – 0.14
|
0.076
|
0.076
|
(pDvR × fCvP) × NUC2 Indiv
|
-0.93
|
-0.05
|
-2.07 – 0.20
|
-0.12 – 0.01
|
0.107
|
0.107
|
(pIvP × fDvR) × NUC2 bind
|
-0.25
|
-0.02
|
-1.13 – 0.63
|
-0.08 – 0.05
|
0.577
|
0.577
|
(pIvP × fDvR) × NUC2 Indiv
|
-0.23
|
-0.01
|
-1.27 – 0.80
|
-0.07 – 0.05
|
0.658
|
0.658
|
(pIvP × fCvP) × NUC2 bind
|
-1.03
|
-0.09
|
-1.83 – -0.23
|
-0.16 – -0.02
|
0.012
|
0.012
|
(pIvP × fCvP) × NUC2 Indiv
|
0.42
|
0.03
|
-0.51 – 1.36
|
-0.03 – 0.09
|
0.372
|
0.372
|
(lin × pDvR) × fDvR
|
-0.49
|
-0.02
|
-0.97 – -0.01
|
-0.04 – -0.00
|
0.046
|
0.046
|
(lin × pDvR) × fCvP
|
0.15
|
0.01
|
-0.27 – 0.56
|
-0.01 – 0.02
|
0.490
|
0.490
|
(lin × pIvP) × fDvR
|
-0.14
|
-0.01
|
-0.55 – 0.28
|
-0.02 – 0.01
|
0.521
|
0.521
|
(lin × pIvP) × fCvP
|
0.24
|
0.01
|
-0.13 – 0.61
|
-0.01 – 0.03
|
0.198
|
0.198
|
Random Effects
|
σ2
|
0.72
|
τ00 NUC2.ID
|
1.74
|
ICC
|
0.71
|
N NUC2.ID
|
977
|
Observations
|
2931
|
Marginal R2 / Conditional R2
|
0.173 / 0.758
|
m1.2 <- lmer(value ~ (lin+quad) + ((pDvR + pIvP)*(fDvR + fCvP)) + (NUC2.bind+ NUC2.Indiv)*(fDvR + fCvP) + lin*((pDvR + pIvP)*(fDvR + fCvP)) + (1|NUC2.ID),data = d2)
summary(m1.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ (lin + quad) + ((pDvR + pIvP) * (fDvR + fCvP)) + (NUC2.bind +
## NUC2.Indiv) * (fDvR + fCvP) + lin * ((pDvR + pIvP) * (fDvR +
## fCvP)) + (1 | NUC2.ID)
## Data: d2
##
## REML criterion at convergence: 9456.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6189 -0.4843 -0.1048 0.4083 5.2690
##
## Random effects:
## Groups Name Variance Std.Dev.
## NUC2.ID (Intercept) 1.7545 1.3246
## Residual 0.7206 0.8489
## Number of obs: 2931, groups: NUC2.ID, 977
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.24736 0.34491 969.99311 -3.616 0.000314 ***
## lin -0.92211 0.04105 1944.00002 -22.464 < 2e-16 ***
## quad 0.30553 0.09978 1944.00002 3.062 0.002229 **
## pDvR 0.63567 0.12210 961.99993 5.206 2.36e-07 ***
## pIvP -0.10327 0.10359 961.99993 -0.997 0.319078
## fDvR -0.36044 0.87124 961.99994 -0.414 0.679182
## fCvP 0.06891 0.70497 961.99982 0.098 0.922152
## NUC2.bind 0.66650 0.07859 961.99985 8.481 < 2e-16 ***
## NUC2.Indiv -0.63289 0.09719 961.99980 -6.512 1.19e-10 ***
## pDvR:fDvR 0.76498 0.29933 961.99993 2.556 0.010752 *
## pDvR:fCvP -0.39417 0.25881 961.99993 -1.523 0.128079
## pIvP:fDvR -0.01448 0.24945 961.99993 -0.058 0.953732
## pIvP:fCvP 0.31896 0.22341 961.99994 1.428 0.153710
## fDvR:NUC2.bind 0.25652 0.19063 961.99986 1.346 0.178733
## fCvP:NUC2.bind -0.02017 0.16831 961.99985 -0.120 0.904623
## fDvR:NUC2.Indiv -0.12060 0.23475 961.99985 -0.514 0.607568
## fCvP:NUC2.Indiv -0.06883 0.20900 961.99983 -0.329 0.741974
## lin:pDvR -0.20538 0.09973 1944.00002 -2.059 0.039587 *
## lin:pIvP 0.05012 0.08778 1944.00002 0.571 0.568053
## lin:fDvR -0.10861 0.10000 1944.00002 -1.086 0.277542
## lin:fCvP 0.18536 0.08755 1944.00002 2.117 0.034370 *
## lin:pDvR:fDvR -0.49096 0.24575 1944.00002 -1.998 0.045877 *
## lin:pDvR:fCvP 0.14534 0.21028 1944.00002 0.691 0.489549
## lin:pIvP:fDvR -0.13569 0.21142 1944.00002 -0.642 0.521069
## lin:pIvP:fCvP 0.24348 0.18926 1944.00002 1.287 0.198412
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 25 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
tab_model(m1.2)
Â
|
value
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.25
|
-1.92 – -0.57
|
<0.001
|
lin
|
-0.92
|
-1.00 – -0.84
|
<0.001
|
quad
|
0.31
|
0.11 – 0.50
|
0.002
|
pDvR
|
0.64
|
0.40 – 0.88
|
<0.001
|
pIvP
|
-0.10
|
-0.31 – 0.10
|
0.319
|
fDvR
|
-0.36
|
-2.07 – 1.35
|
0.679
|
fCvP
|
0.07
|
-1.31 – 1.45
|
0.922
|
NUC2 bind
|
0.67
|
0.51 – 0.82
|
<0.001
|
NUC2 Indiv
|
-0.63
|
-0.82 – -0.44
|
<0.001
|
pDvR × fDvR
|
0.76
|
0.18 – 1.35
|
0.011
|
pDvR × fCvP
|
-0.39
|
-0.90 – 0.11
|
0.128
|
pIvP × fDvR
|
-0.01
|
-0.50 – 0.47
|
0.954
|
pIvP × fCvP
|
0.32
|
-0.12 – 0.76
|
0.153
|
fDvR × NUC2 bind
|
0.26
|
-0.12 – 0.63
|
0.179
|
fCvP × NUC2 bind
|
-0.02
|
-0.35 – 0.31
|
0.905
|
fDvR × NUC2 Indiv
|
-0.12
|
-0.58 – 0.34
|
0.607
|
fCvP × NUC2 Indiv
|
-0.07
|
-0.48 – 0.34
|
0.742
|
lin × pDvR
|
-0.21
|
-0.40 – -0.01
|
0.040
|
lin × pIvP
|
0.05
|
-0.12 – 0.22
|
0.568
|
lin × fDvR
|
-0.11
|
-0.30 – 0.09
|
0.277
|
lin × fCvP
|
0.19
|
0.01 – 0.36
|
0.034
|
(lin × pDvR) × fDvR
|
-0.49
|
-0.97 – -0.01
|
0.046
|
(lin × pDvR) × fCvP
|
0.15
|
-0.27 – 0.56
|
0.490
|
(lin × pIvP) × fDvR
|
-0.14
|
-0.55 – 0.28
|
0.521
|
(lin × pIvP) × fCvP
|
0.24
|
-0.13 – 0.61
|
0.198
|
Random Effects
|
σ2
|
0.72
|
τ00 NUC2.ID
|
1.75
|
ICC
|
0.71
|
N NUC2.ID
|
977
|
Observations
|
2931
|
Marginal R2 / Conditional R2
|
0.160 / 0.756
|
rep <- lmer(value ~ (lin+quad) + ((matchvsmismatch + othervsmatch)*(demd + in_d)) + (1|NUC2.ID),data = d2)
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
summary(rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ (lin + quad) + ((matchvsmismatch + othervsmatch) * (demd +
## in_d)) + (1 | NUC2.ID)
## Data: d2
##
## REML criterion at convergence: 9518.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5634 -0.5320 -0.1229 0.4064 5.3555
##
## Random effects:
## Groups Name Variance Std.Dev.
## NUC2.ID (Intercept) 1.9050 1.3802
## Residual 0.7235 0.8506
## Number of obs: 2931, groups: NUC2.ID, 977
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.97229 0.10461 1062.65404 -9.295 < 2e-16 ***
## lin -0.89150 0.03849 1952.00001 -23.165 < 2e-16 ***
## quad 0.30553 0.09999 1952.00000 3.056 0.00228 **
## matchvsmismatch 0.46354 0.25087 969.99999 1.848 0.06494 .
## othervsmatch 0.57477 0.21642 970.00000 2.656 0.00804 **
## demd -0.92377 0.12170 969.99999 -7.590 7.48e-14 ***
## in_d -1.01686 0.19704 970.00000 -5.161 2.98e-07 ***
## matchvsmismatch:demd -0.06136 0.29990 969.99999 -0.205 0.83793
## othervsmatch:demd -0.44027 0.25662 969.99999 -1.716 0.08654 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) lin quad mtchvs othrvs demd in_d mtchv:
## lin 0.000
## quad 0.212 0.000
## mtchvsmsmtc -0.053 0.000 0.000
## othervsmtch -0.005 0.000 0.000 0.038
## demd -0.821 0.000 0.000 0.045 0.005
## in_d -0.503 0.000 0.000 0.000 -0.729 0.432
## mtchvsmsmt: 0.044 0.000 0.000 -0.837 -0.032 -0.033 0.000
## othrvsmtch: 0.005 0.000 0.000 -0.032 -0.843 -0.017 0.615 0.024
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
tab_model(rep)
Â
|
value
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.97
|
-1.18 – -0.77
|
<0.001
|
lin
|
-0.89
|
-0.97 – -0.82
|
<0.001
|
quad
|
0.31
|
0.11 – 0.50
|
0.002
|
matchvsmismatch
|
0.46
|
-0.03 – 0.96
|
0.065
|
othervsmatch
|
0.57
|
0.15 – 1.00
|
0.008
|
demd
|
-0.92
|
-1.16 – -0.69
|
<0.001
|
in d
|
-1.02
|
-1.40 – -0.63
|
<0.001
|
matchvsmismatch × demd
|
-0.06
|
-0.65 – 0.53
|
0.838
|
othervsmatch × demd
|
-0.44
|
-0.94 – 0.06
|
0.086
|
Random Effects
|
σ2
|
0.72
|
τ00 NUC2.ID
|
1.90
|
ICC
|
0.72
|
N NUC2.ID
|
977
|
Observations
|
2931
|
Marginal R2 / Conditional R2
|
0.103 / 0.753
|
dem <- lmer(value ~ (lin+quad) + ((matchvsmismatch + othervsmatch)*(repd+ in_d)) + (1|NUC2.ID),data = d2)
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
summary(dem)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: value ~ (lin + quad) + ((matchvsmismatch + othervsmatch) * (repd +
## in_d)) + (1 | NUC2.ID)
## Data: d2
##
## REML criterion at convergence: 9518.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5634 -0.5320 -0.1229 0.4064 5.3555
##
## Random effects:
## Groups Name Variance Std.Dev.
## NUC2.ID (Intercept) 1.9050 1.3802
## Residual 0.7235 0.8506
## Number of obs: 2931, groups: NUC2.ID, 977
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.89606 0.06969 1194.33443 -27.206 < 2e-16 ***
## lin -0.89150 0.03849 1952.00001 -23.165 < 2e-16 ***
## quad 0.30553 0.09999 1952.00001 3.056 0.00228 **
## matchvsmismatch 0.40218 0.16433 969.99998 2.447 0.01457 *
## othervsmatch 0.13450 0.13790 969.99999 0.975 0.32962
## repd 0.92377 0.12170 969.99998 7.590 7.48e-14 ***
## in_d 0.20042 0.14136 969.99998 1.418 0.15657
## matchvsmismatch:repd 0.06136 0.29990 969.99998 0.205 0.83793
## othervsmatch:repd 0.44027 0.25662 969.99999 1.716 0.08654 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) lin quad mtchvs othrvs repd in_d mtchv:
## lin 0.000
## quad 0.319 0.000
## mtchvsmsmtc 0.015 0.000 0.000
## othervsmtch -0.043 0.000 0.000 -0.011
## repd -0.514 0.000 0.000 -0.008 0.025
## in_d -0.415 0.000 0.000 0.000 -0.629 0.238
## mtchvsmsmt: -0.008 0.000 0.000 -0.548 0.006 -0.033 0.000
## othrvsmtch: 0.023 0.000 0.000 0.006 -0.537 -0.017 0.338 0.024
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
tab_model(dem)
Â
|
value
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.90
|
-2.03 – -1.76
|
<0.001
|
lin
|
-0.89
|
-0.97 – -0.82
|
<0.001
|
quad
|
0.31
|
0.11 – 0.50
|
0.002
|
matchvsmismatch
|
0.40
|
0.08 – 0.72
|
0.014
|
othervsmatch
|
0.13
|
-0.14 – 0.40
|
0.329
|
repd
|
0.92
|
0.69 – 1.16
|
<0.001
|
in d
|
0.20
|
-0.08 – 0.48
|
0.156
|
matchvsmismatch × repd
|
0.06
|
-0.53 – 0.65
|
0.838
|
othervsmatch × repd
|
0.44
|
-0.06 – 0.94
|
0.086
|
Random Effects
|
σ2
|
0.72
|
τ00 NUC2.ID
|
1.90
|
ICC
|
0.72
|
N NUC2.ID
|
977
|
Observations
|
2931
|
Marginal R2 / Conditional R2
|
0.103 / 0.753
|
Descriptives for nuclear endorsement at each level of
casualties
describeBy(d2$value, list(d2$NUC2.party.full))
##
## Descriptive statistics by group
## : dem
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1479 -1.96 1.51 -3 -2.29 0 -3 3 6 1.57 1.59 0.04
## ------------------------------------------------------------
## : ind
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 834 -1.67 1.69 -2 -1.97 1.48 -3 3 6 1.23 0.41 0.06
## ------------------------------------------------------------
## : rep
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 618 -1.03 1.97 -2 -1.25 1.48 -3 3 6 0.74 -0.78 0.08
describeBy(d2$value, list(d2$NUC2.party.full, d2$NUC2.Condition))
##
## Descriptive statistics by group
## : dem
## : control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 525 -1.87 1.51 -2 -2.17 1.48 -3 3 6 1.39 0.93 0.07
## ------------------------------------------------------------
## : ind
## : control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 249 -1.65 1.75 -2 -1.94 1.48 -3 3 6 1.16 0.09 0.11
## ------------------------------------------------------------
## : rep
## : control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 207 -0.66 2.15 -1 -0.81 2.97 -3 3 6 0.41 -1.34 0.15
## ------------------------------------------------------------
## : dem
## : dem
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 468 -1.81 1.65 -3 -2.11 0 -3 3 6 1.36 0.75 0.08
## ------------------------------------------------------------
## : ind
## : dem
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 303 -1.67 1.62 -2 -1.93 1.48 -3 3 6 1.17 0.33 0.09
## ------------------------------------------------------------
## : rep
## : dem
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 192 -1.46 1.76 -2 -1.75 1.48 -3 3 6 1.11 0.12 0.13
## ------------------------------------------------------------
## : dem
## : rep
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 486 -2.21 1.35 -3 -2.53 0 -3 3 6 2.08 3.97 0.06
## ------------------------------------------------------------
## : ind
## : rep
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 282 -1.7 1.72 -2 -2.03 1.48 -3 3 6 1.34 0.72 0.1
## ------------------------------------------------------------
## : rep
## : rep
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 219 -1 1.88 -2 -1.21 1.48 -3 3 6 0.75 -0.62 0.13
describeBy(d2$value, list(d2$NUC2.Condition,d2$NUC2.party.full, d2$variable))
##
## Descriptive statistics by group
## : control
## : dem
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 175 -1.53 1.62 -2 -1.77 1.48 -3 3 6 1.04 0.05 0.12
## ------------------------------------------------------------
## : dem
## : dem
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 156 -1.36 1.84 -2 -1.63 1.48 -3 3 6 0.98 -0.21 0.15
## ------------------------------------------------------------
## : rep
## : dem
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 162 -1.84 1.44 -2 -2.09 1.48 -3 3 6 1.32 1.08 0.11
## ------------------------------------------------------------
## : control
## : ind
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 83 -1.12 1.95 -2 -1.33 1.48 -3 3 6 0.63 -1.01 0.21
## ------------------------------------------------------------
## : dem
## : ind
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 101 -1.36 1.65 -2 -1.58 1.48 -3 3 6 0.94 -0.05 0.16
## ------------------------------------------------------------
## : rep
## : ind
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 94 -1.29 1.89 -2 -1.55 1.48 -3 3 6 0.92 -0.39 0.2
## ------------------------------------------------------------
## : control
## : rep
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 69 -0.13 2.29 -1 -0.16 2.97 -3 3 6 0.14 -1.61 0.28
## ------------------------------------------------------------
## : dem
## : rep
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 64 -1.09 1.81 -2 -1.29 1.48 -3 3 6 0.79 -0.56 0.23
## ------------------------------------------------------------
## : rep
## : rep
## : NUC2.TO_psychic_numb2_20k
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 73 -0.48 1.95 -1 -0.59 2.97 -3 3 6 0.37 -1.16 0.23
## ------------------------------------------------------------
## : control
## : dem
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 175 -1.7 1.48 -2 -1.95 1.48 -3 2 5 1.16 0.4 0.11
## ------------------------------------------------------------
## : dem
## : dem
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 156 -1.79 1.57 -2 -2.04 1.48 -3 3 6 1.22 0.37 0.13
## ------------------------------------------------------------
## : rep
## : dem
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 162 -2.22 1.33 -3 -2.52 0 -3 3 6 2.33 5.54 0.1
## ------------------------------------------------------------
## : control
## : ind
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 83 -1.59 1.66 -2 -1.84 1.48 -3 3 6 1.03 -0.14 0.18
## ------------------------------------------------------------
## : dem
## : ind
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 101 -1.61 1.58 -2 -1.84 1.48 -3 3 6 1.03 -0.12 0.16
## ------------------------------------------------------------
## : rep
## : ind
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 94 -1.66 1.72 -2 -1.95 1.48 -3 3 6 1.25 0.5 0.18
## ------------------------------------------------------------
## : control
## : rep
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 69 -0.55 2.05 -1 -0.65 2.97 -3 3 6 0.3 -1.43 0.25
## ------------------------------------------------------------
## : dem
## : rep
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 64 -1.38 1.71 -2 -1.62 1.48 -3 3 6 1.07 0.13 0.21
## ------------------------------------------------------------
## : rep
## : rep
## : NUC2.TOT_Nuc_endorse
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 73 -0.9 1.8 -1 -1.08 1.48 -3 3 6 0.7 -0.6 0.21
## ------------------------------------------------------------
## : control
## : dem
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 175 -2.39 1.28 -3 -2.74 0 -3 2 5 2.4 4.77 0.1
## ------------------------------------------------------------
## : dem
## : dem
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 156 -2.28 1.39 -3 -2.63 0 -3 3 6 2.03 3.23 0.11
## ------------------------------------------------------------
## : rep
## : dem
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 162 -2.57 1.17 -3 -2.9 0 -3 3 6 3.19 9.78 0.09
## ------------------------------------------------------------
## : control
## : ind
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 83 -2.24 1.45 -3 -2.61 0 -3 3 6 2.16 3.94 0.16
## ------------------------------------------------------------
## : dem
## : ind
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 101 -2.03 1.57 -3 -2.38 0 -3 3 6 1.64 1.65 0.16
## ------------------------------------------------------------
## : rep
## : ind
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 94 -2.16 1.43 -3 -2.49 0 -3 3 6 2.02 3.54 0.15
## ------------------------------------------------------------
## : control
## : rep
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 69 -1.29 1.97 -2 -1.53 1.48 -3 3 6 0.77 -0.81 0.24
## ------------------------------------------------------------
## : dem
## : rep
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 64 -1.92 1.69 -3 -2.29 0 -3 3 6 1.62 1.46 0.21
## ------------------------------------------------------------
## : rep
## : rep
## : NUC2.TOT_psychic_num_1mil
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 73 -1.62 1.73 -2 -1.93 1.48 -3 3 6 1.35 0.82 0.2
describeBy(NUC2$TOT_psychic_num_1mil, list(NUC2$party.full))
##
## Descriptive statistics by group
## : dem
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 493 -2.41 1.28 -3 -2.78 0 -3 3 6 2.49 5.38 0.06
## ------------------------------------------------------------
## : ind
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 278 -2.14 1.49 -3 -2.49 0 -3 3 6 1.93 2.91 0.09
## ------------------------------------------------------------
## : rep
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 206 -1.6 1.81 -2 -1.92 1.48 -3 3 6 1.21 0.25 0.13
describeBy(NUC2$TO_psychic_numb2_20k, list(NUC2$match))
##
## Descriptive statistics by group
## : control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 522 -1.2 1.87 -2 -1.45 1.48 -3 3 6 0.85 -0.5 0.08
## ------------------------------------------------------------
## : no
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 226 -1.63 1.58 -2 -1.88 1.48 -3 3 6 1.18 0.55 0.11
## ------------------------------------------------------------
## : yes
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 229 -1.08 1.92 -2 -1.3 1.48 -3 3 6 0.76 -0.67 0.13
describeBy(NUC2$TOT_psychic_num_1mil, list(NUC2$match))
##
## Descriptive statistics by group
## : control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 522 -2.11 1.53 -3 -2.48 0 -3 3 6 1.84 2.35 0.07
## ------------------------------------------------------------
## : no
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 226 -2.39 1.37 -3 -2.77 0 -3 3 6 2.54 5.66 0.09
## ------------------------------------------------------------
## : yes
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 229 -2.07 1.53 -3 -2.41 0 -3 3 6 1.77 2.26 0.1
describeBy(NUC2$TOT_Nuc_endorse, list(NUC2$match))
##
## Descriptive statistics by group
## : control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 522 -1.51 1.69 -2 -1.77 1.48 -3 3 6 1.04 -0.07 0.07
## ------------------------------------------------------------
## : no
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 226 -1.98 1.49 -3 -2.31 0 -3 3 6 1.82 2.81 0.1
## ------------------------------------------------------------
## : yes
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 229 -1.51 1.69 -2 -1.74 1.48 -3 3 6 1.03 -0.02 0.11