########### Computational Statistics Final Exam ###########
############### 1. Newton Raphson Algorithm ###############
setwd('D:\\R Code')
# Input data
x <- c(3.17693741992116,
       10,
       5.18462506122887,
       2.56333450908598,
       3.40210871770978,
       10,
       2.18819495498594,
       0.317795732254817,
       10,
       9.15132800889364)
summary(x)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.3178  2.7170  4.2930  5.5980  9.7880 10.0000
# Functions
# Original loglike function
loglike <- function(theta, dat){
  
  y <- dat
  m = 7
  
  l <- rep(0, length(theta) )
  for (i in 1:length(theta)){
    
    l[i] = m*log(theta[i]) - theta[i] * sum(y)
    
  }
  return(l)
}

# First derivative
loglike1 <- function(theta, dat){
  
  y <- dat
  m = 7
  l <- rep(0, length(theta) )
  for (i in 1:length(theta)){
    
    l[i] = m/theta[i] - sum(y)
    
  }
  return(l)
}

# Second derivative
loglike2 <- function(theta, dat){
  
  y <- dat
  m = 7
  
  l <- rep(0, length(theta) )
  for (i in 1:length(theta)){
    
    l[i] = -m/((theta[i])^2)
    
  }
  return(l)
}

Newton = function(theta, dat, iter=50){
  for(i in 1:iter){
    theta = theta - loglike1(theta, dat)/loglike2(theta,dat)
    print(c(i,theta))
  }
  return(theta)
}

# Plot loglike, loglike1, loglike2
theta <- seq(0.005,1,by=0.01) # theta > 0
plot(theta, loglike(theta, dat=x), type='l', xlab="theta", main="Loglike Function")

plot(theta, loglike1(theta, dat=x), type='l', xlab="theta", main="First Derivative of Loglike Function" )

plot(theta, loglike2(theta, dat=x), type='l', xlab="theta", main="Second Derivative of Loglike Function" )

min(loglike1(theta,dat=x))
## [1] -48.94915
theta <- seq(0.005,50,by=0.01) # theta > 0
plot(theta, loglike(theta, dat=x), type='l', xlab="theta", main="Loglike Function")

plot(theta, loglike1(theta, dat=x), type='l', xlab="theta", main="First Derivative of Loglike Function" )

plot(theta, loglike2(theta, dat=x), type='l', xlab="theta", main="Second Derivative of Loglike Function" )

min(loglike1(theta,dat=x))
## [1] -55.84431
# Find MLE using the Newton-Raphson Method with different starting points
Newton(mean(x), dat=x)
## [1]    1.0000 -239.4725
## [1]       2.0 -459127.2
## [1]  3.000000e+00 -1.685911e+12
## [1]  4.000000e+00 -2.273201e+25
## [1]  5.000000e+00 -4.132796e+51
## [1]   6.000000e+00 -1.366018e+104
## [1]   7.000000e+00 -1.492386e+209
## [1]    8 -Inf
## [1]    9 -Inf
## [1]   10 -Inf
## [1]   11 -Inf
## [1]   12 -Inf
## [1]   13 -Inf
## [1]   14 -Inf
## [1]   15 -Inf
## [1]   16 -Inf
## [1]   17 -Inf
## [1]   18 -Inf
## [1]   19 -Inf
## [1]   20 -Inf
## [1]   21 -Inf
## [1]   22 -Inf
## [1]   23 -Inf
## [1]   24 -Inf
## [1]   25 -Inf
## [1]   26 -Inf
## [1]   27 -Inf
## [1]   28 -Inf
## [1]   29 -Inf
## [1]   30 -Inf
## [1]   31 -Inf
## [1]   32 -Inf
## [1]   33 -Inf
## [1]   34 -Inf
## [1]   35 -Inf
## [1]   36 -Inf
## [1]   37 -Inf
## [1]   38 -Inf
## [1]   39 -Inf
## [1]   40 -Inf
## [1]   41 -Inf
## [1]   42 -Inf
## [1]   43 -Inf
## [1]   44 -Inf
## [1]   45 -Inf
## [1]   46 -Inf
## [1]   47 -Inf
## [1]   48 -Inf
## [1]   49 -Inf
## [1]   50 -Inf
## [1] -Inf
Newton(0.01, dat=x)
## [1] 1.00000000 0.01920022
## [1] 2.00000000 0.03545208
## [1] 3.00000000 0.06085218
## [1] 4.00000000 0.09208875
## [1] 5.0000000 0.1163538
## [1] 6.0000000 0.1244323
## [1] 7.0000000 0.1250321
## [1] 8.000000 0.125035
## [1] 9.000000 0.125035
## [1] 10.000000  0.125035
## [1] 11.000000  0.125035
## [1] 12.000000  0.125035
## [1] 13.000000  0.125035
## [1] 14.000000  0.125035
## [1] 15.000000  0.125035
## [1] 16.000000  0.125035
## [1] 17.000000  0.125035
## [1] 18.000000  0.125035
## [1] 19.000000  0.125035
## [1] 20.000000  0.125035
## [1] 21.000000  0.125035
## [1] 22.000000  0.125035
## [1] 23.000000  0.125035
## [1] 24.000000  0.125035
## [1] 25.000000  0.125035
## [1] 26.000000  0.125035
## [1] 27.000000  0.125035
## [1] 28.000000  0.125035
## [1] 29.000000  0.125035
## [1] 30.000000  0.125035
## [1] 31.000000  0.125035
## [1] 32.000000  0.125035
## [1] 33.000000  0.125035
## [1] 34.000000  0.125035
## [1] 35.000000  0.125035
## [1] 36.000000  0.125035
## [1] 37.000000  0.125035
## [1] 38.000000  0.125035
## [1] 39.000000  0.125035
## [1] 40.000000  0.125035
## [1] 41.000000  0.125035
## [1] 42.000000  0.125035
## [1] 43.000000  0.125035
## [1] 44.000000  0.125035
## [1] 45.000000  0.125035
## [1] 46.000000  0.125035
## [1] 47.000000  0.125035
## [1] 48.000000  0.125035
## [1] 49.000000  0.125035
## [1] 50.000000  0.125035
## [1] 0.125035
Newton(0.1, dat=x)
## [1] 1.0000000 0.1200224
## [1] 2.000000 0.124834
## [1] 3.0000000 0.1250347
## [1] 4.000000 0.125035
## [1] 5.000000 0.125035
## [1] 6.000000 0.125035
## [1] 7.000000 0.125035
## [1] 8.000000 0.125035
## [1] 9.000000 0.125035
## [1] 10.000000  0.125035
## [1] 11.000000  0.125035
## [1] 12.000000  0.125035
## [1] 13.000000  0.125035
## [1] 14.000000  0.125035
## [1] 15.000000  0.125035
## [1] 16.000000  0.125035
## [1] 17.000000  0.125035
## [1] 18.000000  0.125035
## [1] 19.000000  0.125035
## [1] 20.000000  0.125035
## [1] 21.000000  0.125035
## [1] 22.000000  0.125035
## [1] 23.000000  0.125035
## [1] 24.000000  0.125035
## [1] 25.000000  0.125035
## [1] 26.000000  0.125035
## [1] 27.000000  0.125035
## [1] 28.000000  0.125035
## [1] 29.000000  0.125035
## [1] 30.000000  0.125035
## [1] 31.000000  0.125035
## [1] 32.000000  0.125035
## [1] 33.000000  0.125035
## [1] 34.000000  0.125035
## [1] 35.000000  0.125035
## [1] 36.000000  0.125035
## [1] 37.000000  0.125035
## [1] 38.000000  0.125035
## [1] 39.000000  0.125035
## [1] 40.000000  0.125035
## [1] 41.000000  0.125035
## [1] 42.000000  0.125035
## [1] 43.000000  0.125035
## [1] 44.000000  0.125035
## [1] 45.000000  0.125035
## [1] 46.000000  0.125035
## [1] 47.000000  0.125035
## [1] 48.000000  0.125035
## [1] 49.000000  0.125035
## [1] 50.000000  0.125035
## [1] 0.125035
Newton(0.2, dat=x)
## [1] 1.00000000 0.08008957
## [1] 2.0000000 0.1088788
## [1] 3.0000000 0.1229474
## [1] 4.0000000 0.1250001
## [1] 5.000000 0.125035
## [1] 6.000000 0.125035
## [1] 7.000000 0.125035
## [1] 8.000000 0.125035
## [1] 9.000000 0.125035
## [1] 10.000000  0.125035
## [1] 11.000000  0.125035
## [1] 12.000000  0.125035
## [1] 13.000000  0.125035
## [1] 14.000000  0.125035
## [1] 15.000000  0.125035
## [1] 16.000000  0.125035
## [1] 17.000000  0.125035
## [1] 18.000000  0.125035
## [1] 19.000000  0.125035
## [1] 20.000000  0.125035
## [1] 21.000000  0.125035
## [1] 22.000000  0.125035
## [1] 23.000000  0.125035
## [1] 24.000000  0.125035
## [1] 25.000000  0.125035
## [1] 26.000000  0.125035
## [1] 27.000000  0.125035
## [1] 28.000000  0.125035
## [1] 29.000000  0.125035
## [1] 30.000000  0.125035
## [1] 31.000000  0.125035
## [1] 32.000000  0.125035
## [1] 33.000000  0.125035
## [1] 34.000000  0.125035
## [1] 35.000000  0.125035
## [1] 36.000000  0.125035
## [1] 37.000000  0.125035
## [1] 38.000000  0.125035
## [1] 39.000000  0.125035
## [1] 40.000000  0.125035
## [1] 41.000000  0.125035
## [1] 42.000000  0.125035
## [1] 43.000000  0.125035
## [1] 44.000000  0.125035
## [1] 45.000000  0.125035
## [1] 46.000000  0.125035
## [1] 47.000000  0.125035
## [1] 48.000000  0.125035
## [1] 49.000000  0.125035
## [1] 50.000000  0.125035
## [1] 0.125035
Newton(0.25, dat=x)
## [1] 1.0000000000 0.0001399607
## [1] 2.0000000000 0.0002797647
## [1] 3.0000000000 0.0005589034
## [1] 4.000000000 0.001115309
## [1] 5.000000000 0.002220669
## [1] 6.000000000 0.004401897
## [1] 7.000000000 0.008648824
## [1] 8.0000000 0.0166994
## [1] 9.00000000 0.03116846
## [1] 10.00000000  0.05456732
## [1] 11.00000000  0.08532056
## [1] 12.0000000  0.1124206
## [1] 13.0000000  0.1237624
## [1] 14.000000  0.125022
## [1] 15.000000  0.125035
## [1] 16.000000  0.125035
## [1] 17.000000  0.125035
## [1] 18.000000  0.125035
## [1] 19.000000  0.125035
## [1] 20.000000  0.125035
## [1] 21.000000  0.125035
## [1] 22.000000  0.125035
## [1] 23.000000  0.125035
## [1] 24.000000  0.125035
## [1] 25.000000  0.125035
## [1] 26.000000  0.125035
## [1] 27.000000  0.125035
## [1] 28.000000  0.125035
## [1] 29.000000  0.125035
## [1] 30.000000  0.125035
## [1] 31.000000  0.125035
## [1] 32.000000  0.125035
## [1] 33.000000  0.125035
## [1] 34.000000  0.125035
## [1] 35.000000  0.125035
## [1] 36.000000  0.125035
## [1] 37.000000  0.125035
## [1] 38.000000  0.125035
## [1] 39.000000  0.125035
## [1] 40.000000  0.125035
## [1] 41.000000  0.125035
## [1] 42.000000  0.125035
## [1] 43.000000  0.125035
## [1] 44.000000  0.125035
## [1] 45.000000  0.125035
## [1] 46.000000  0.125035
## [1] 47.000000  0.125035
## [1] 48.000000  0.125035
## [1] 49.000000  0.125035
## [1] 50.000000  0.125035
## [1] 0.125035
Newton(0.26, dat=x)
## [1]  1.00000000 -0.02064862
## [1]  2.00000000 -0.04470721
## [1]  3.0000000 -0.1053998
## [1]  4.0000000 -0.2996477
## [1]  5.000000 -1.317404
## [1]   6.00000 -16.51535
## [1]     7.000 -2214.475
## [1]         8 -39224658
## [1]  9.000000e+00 -1.230514e+16
## [1]  1.000000e+01 -1.210994e+33
## [1]  1.100000e+01 -1.172876e+67
## [1]   1.200000e+01 -1.100203e+135
## [1]   1.300000e+01 -9.680856e+270
## [1]   14 -Inf
## [1]   15 -Inf
## [1]   16 -Inf
## [1]   17 -Inf
## [1]   18 -Inf
## [1]   19 -Inf
## [1]   20 -Inf
## [1]   21 -Inf
## [1]   22 -Inf
## [1]   23 -Inf
## [1]   24 -Inf
## [1]   25 -Inf
## [1]   26 -Inf
## [1]   27 -Inf
## [1]   28 -Inf
## [1]   29 -Inf
## [1]   30 -Inf
## [1]   31 -Inf
## [1]   32 -Inf
## [1]   33 -Inf
## [1]   34 -Inf
## [1]   35 -Inf
## [1]   36 -Inf
## [1]   37 -Inf
## [1]   38 -Inf
## [1]   39 -Inf
## [1]   40 -Inf
## [1]   41 -Inf
## [1]   42 -Inf
## [1]   43 -Inf
## [1]   44 -Inf
## [1]   45 -Inf
## [1]   46 -Inf
## [1]   47 -Inf
## [1]   48 -Inf
## [1]   49 -Inf
## [1]   50 -Inf
## [1] -Inf
Newton(0.5, dat=x)
## [1]  1.0000000 -0.9994402
## [1]  2.000000 -9.987688
## [1]    3.0000 -817.7834
## [1]        4 -5350295
## [1]  5.000000e+00 -2.289412e+14
## [1]  6.00000e+00 -4.19195e+29
## [1]  7.000000e+00 -1.405402e+60
## [1]   8.000000e+00 -1.579682e+121
## [1]   9.000000e+00 -1.995758e+243
## [1]   10 -Inf
## [1]   11 -Inf
## [1]   12 -Inf
## [1]   13 -Inf
## [1]   14 -Inf
## [1]   15 -Inf
## [1]   16 -Inf
## [1]   17 -Inf
## [1]   18 -Inf
## [1]   19 -Inf
## [1]   20 -Inf
## [1]   21 -Inf
## [1]   22 -Inf
## [1]   23 -Inf
## [1]   24 -Inf
## [1]   25 -Inf
## [1]   26 -Inf
## [1]   27 -Inf
## [1]   28 -Inf
## [1]   29 -Inf
## [1]   30 -Inf
## [1]   31 -Inf
## [1]   32 -Inf
## [1]   33 -Inf
## [1]   34 -Inf
## [1]   35 -Inf
## [1]   36 -Inf
## [1]   37 -Inf
## [1]   38 -Inf
## [1]   39 -Inf
## [1]   40 -Inf
## [1]   41 -Inf
## [1]   42 -Inf
## [1]   43 -Inf
## [1]   44 -Inf
## [1]   45 -Inf
## [1]   46 -Inf
## [1]   47 -Inf
## [1]   48 -Inf
## [1]   49 -Inf
## [1]   50 -Inf
## [1] -Inf
Newton(2, dat=x)
## [1]   1.00000 -27.99104
## [1]     2.000 -6322.215
## [1]          3 -319686379
## [1]  4.000000e+00 -8.173662e+17
## [1]  5.000000e+00 -5.343204e+36
## [1]  6.000000e+00 -2.283347e+74
## [1]   7.000000e+00 -4.169771e+149
## [1]   8.00000e+00 -1.39057e+300
## [1]    9 -Inf
## [1]   10 -Inf
## [1]   11 -Inf
## [1]   12 -Inf
## [1]   13 -Inf
## [1]   14 -Inf
## [1]   15 -Inf
## [1]   16 -Inf
## [1]   17 -Inf
## [1]   18 -Inf
## [1]   19 -Inf
## [1]   20 -Inf
## [1]   21 -Inf
## [1]   22 -Inf
## [1]   23 -Inf
## [1]   24 -Inf
## [1]   25 -Inf
## [1]   26 -Inf
## [1]   27 -Inf
## [1]   28 -Inf
## [1]   29 -Inf
## [1]   30 -Inf
## [1]   31 -Inf
## [1]   32 -Inf
## [1]   33 -Inf
## [1]   34 -Inf
## [1]   35 -Inf
## [1]   36 -Inf
## [1]   37 -Inf
## [1]   38 -Inf
## [1]   39 -Inf
## [1]   40 -Inf
## [1]   41 -Inf
## [1]   42 -Inf
## [1]   43 -Inf
## [1]   44 -Inf
## [1]   45 -Inf
## [1]   46 -Inf
## [1]   47 -Inf
## [1]   48 -Inf
## [1]   49 -Inf
## [1]   50 -Inf
## [1] -Inf
Newton(10, dat=x)
## [1]    1.0000 -779.7761
## [1]        2 -4864604
## [1]  3.00000e+00 -1.89262e+14
## [1]  4.000000e+00 -2.864805e+29
## [1]  5.000000e+00 -6.563848e+59
## [1]   6.000000e+00 -3.445764e+120
## [1]   7.00000e+00 -9.49597e+241
## [1]    8 -Inf
## [1]    9 -Inf
## [1]   10 -Inf
## [1]   11 -Inf
## [1]   12 -Inf
## [1]   13 -Inf
## [1]   14 -Inf
## [1]   15 -Inf
## [1]   16 -Inf
## [1]   17 -Inf
## [1]   18 -Inf
## [1]   19 -Inf
## [1]   20 -Inf
## [1]   21 -Inf
## [1]   22 -Inf
## [1]   23 -Inf
## [1]   24 -Inf
## [1]   25 -Inf
## [1]   26 -Inf
## [1]   27 -Inf
## [1]   28 -Inf
## [1]   29 -Inf
## [1]   30 -Inf
## [1]   31 -Inf
## [1]   32 -Inf
## [1]   33 -Inf
## [1]   34 -Inf
## [1]   35 -Inf
## [1]   36 -Inf
## [1]   37 -Inf
## [1]   38 -Inf
## [1]   39 -Inf
## [1]   40 -Inf
## [1]   41 -Inf
## [1]   42 -Inf
## [1]   43 -Inf
## [1]   44 -Inf
## [1]   45 -Inf
## [1]   46 -Inf
## [1]   47 -Inf
## [1]   48 -Inf
## [1]   49 -Inf
## [1]   50 -Inf
## [1] -Inf
Newton(50, dat=x)
## [1]      1.0 -19894.4
## [1]           2 -3165451186
## [1]  3.000000e+00 -8.013821e+19
## [1]  4.000000e+00 -5.136268e+40
## [1]  5.000000e+00 -2.109909e+82
## [1]   6.000000e+00 -3.560377e+165
## [1]    7 -Inf
## [1]    8 -Inf
## [1]    9 -Inf
## [1]   10 -Inf
## [1]   11 -Inf
## [1]   12 -Inf
## [1]   13 -Inf
## [1]   14 -Inf
## [1]   15 -Inf
## [1]   16 -Inf
## [1]   17 -Inf
## [1]   18 -Inf
## [1]   19 -Inf
## [1]   20 -Inf
## [1]   21 -Inf
## [1]   22 -Inf
## [1]   23 -Inf
## [1]   24 -Inf
## [1]   25 -Inf
## [1]   26 -Inf
## [1]   27 -Inf
## [1]   28 -Inf
## [1]   29 -Inf
## [1]   30 -Inf
## [1]   31 -Inf
## [1]   32 -Inf
## [1]   33 -Inf
## [1]   34 -Inf
## [1]   35 -Inf
## [1]   36 -Inf
## [1]   37 -Inf
## [1]   38 -Inf
## [1]   39 -Inf
## [1]   40 -Inf
## [1]   41 -Inf
## [1]   42 -Inf
## [1]   43 -Inf
## [1]   44 -Inf
## [1]   45 -Inf
## [1]   46 -Inf
## [1]   47 -Inf
## [1]   48 -Inf
## [1]   49 -Inf
## [1]   50 -Inf
## [1] -Inf
############### 2. Logistic Regression with IRLS ###############
# Iteratively Reweighted Least Squares
IRLS = function(beta.init, iter, X, y, X.nrow){
  beta.values = matrix(0, iter+1, 4)
  cov.values = matrix(0, iter, 16)
  beta.values[1,] = beta.init
  W = matrix(0, X.nrow, X.nrow)
  for(i in 1:iter){
    pi = exp(X %*% beta.init)/(1 + exp(X %*% beta.init))
    for(j in 1:X.nrow) W[j,j] = pi[j]
    cov.matrix = solve(t(X) %*% W %*% X)
    beta.init = beta.init + cov.matrix %*% t(X) %*% (y - pi)
    beta.values[i+1,] = beta.init
    cov.values[i,] = c(cov.matrix[1,],cov.matrix[2,],cov.matrix[3,],cov.matrix[4,])
  }
  list(beta=beta.values[2:(iter+1),], cov=cov.values)
}

# Read Data
data = read.table("logistic.txt");
X = matrix(1,nrow(data),4); y = rep(NA,nrow(data));
for(i in 1:nrow(data)){
  X[i,2] = data[i,2]
  X[i,3] = data[i,3]
  X[i,4] = data[i,4]
  y[i] = data[i,1]
}

# Running Function
beta.init = c(-4.0,0.0,0.5,-1.0); iter = 100; X.nrow = nrow(data);
result = IRLS(beta.init, iter, X, y, X.nrow);
result$beta
##              [,1]        [,2]      [,3]        [,4]
##   [1,] -35.111223 0.036000268 0.7628247 17.94253279
##   [2,] -36.236029 0.036393376 0.9111047 17.82662722
##   [3,] -37.344215 0.036774537 1.0583220 17.70873760
##   [4,] -38.432693 0.037142161 1.2042287 17.58843247
##   [5,] -39.498939 0.037494897 1.3486865 17.46529783
##   [6,] -40.541567 0.037831803 1.4917666 17.33898393
##   [7,] -41.560286 0.038152351 1.6337399 17.20919824
##   [8,] -42.555009 0.038456185 1.7749317 17.07562372
##   [9,] -43.524971 0.038742801 1.9155879 16.93783744
##  [10,] -44.468703 0.039011468 2.0558718 16.79532157
##  [11,] -45.384815 0.039261478 2.1959528 16.64757318
##  [12,] -46.272844 0.039492532 2.3360754 16.49423034
##  [13,] -47.133485 0.039704980 2.4765398 16.33512460
##  [14,] -47.968170 0.039899808 2.6176150 16.17024164
##  [15,] -48.778414 0.040078428 2.7594557 15.99963913
##  [16,] -49.565341 0.040242390 2.9020753 15.82337888
##  [17,] -50.329555 0.040393070 3.0453851 15.64149967
##  [18,] -51.071274 0.040531369 3.1892786 15.45402695
##  [19,] -51.790587 0.040657549 3.3337116 15.26099944
##  [20,] -52.487708 0.040771355 3.4787329 15.06249439
##  [21,] -53.163172 0.040872444 3.6244541 14.85864069
##  [22,] -53.817746 0.040960709 3.7709790 14.64960638
##  [23,] -54.451937 0.041036182 3.9183145 14.43555549
##  [24,] -55.065392 0.041098740 4.0662955 14.21659841
##  [25,] -55.656468 0.041147852 4.2145367 13.99275333
##  [26,] -56.221813 0.041182252 4.3624070 13.76390750
##  [27,] -56.756007 0.041199526 4.5090306 13.52978084
##  [28,] -57.251629 0.041195992 4.6533325 13.28992342
##  [29,] -57.699954 0.041167107 4.7941203 13.04376754
##  [30,] -58.092035 0.041108247 4.9301823 12.79071718
##  [31,] -58.419673 0.041015386 5.0603716 12.53023178
##  [32,] -58.675818 0.040885341 5.1836400 12.26186886
##  [33,] -58.854410 0.040715605 5.2990228 11.98528424
##  [34,] -58.950173 0.040504017 5.4056479 11.70021720
##  [35,] -58.958944 0.040248686 5.5028433 11.40649152
##  [36,] -58.878510 0.039948345 5.5902937 11.10403733
##  [37,] -58.708930 0.039602591 5.6680857 10.79289711
##  [38,] -58.451520 0.039211403 5.7365415 10.47318155
##  [39,] -58.107098 0.038774318 5.7959281 10.14499518
##  [40,] -57.674593 0.038289885 5.8462104  9.80837778
##  [41,] -57.150703 0.037755666 5.8869647  9.46328939
##  [42,] -56.530567 0.037168727 5.9174597  9.10964001
##  [43,] -55.808809 0.036526236 5.9368024  8.74733887
##  [44,] -54.980083 0.035825702 5.9440245  8.37632938
##  [45,] -54.039120 0.035064823 5.9381099  7.99660219
##  [46,] -52.980842 0.034241396 5.9180336  7.60820644
##  [47,] -51.800796 0.033353509 5.8828315  7.21127399
##  [48,] -50.495478 0.032399781 5.8316252  6.80604657
##  [49,] -49.061938 0.031379244 5.7635248  6.39288721
##  [50,] -47.496706 0.030290863 5.6774183  5.97227714
##  [51,] -45.794680 0.029133054 5.5717448  5.54482064
##  [52,] -43.948762 0.027903580 5.4443852  5.11127777
##  [53,] -41.950994 0.026600128 5.2928260  4.67262563
##  [54,] -39.795478 0.025221614 5.1146831  4.23013404
##  [55,] -37.481848 0.023769565 4.9083670  3.78543511
##  [56,] -35.017299 0.022248660 4.6735338  3.34056179
##  [57,] -32.416568 0.020666228 4.4111876  2.89794856
##  [58,] -29.700060 0.019031046 4.1234216  2.46042412
##  [59,] -26.890944 0.017351892 3.8128981  2.03124242
##  [60,] -24.013487 0.015636980 3.4824775  1.61418184
##  [61,] -21.095395 0.013895636 3.1355151  1.21370411
##  [62,] -18.174571 0.012142040 2.7770128  0.83513900
##  [63,] -15.306624 0.010398382 2.4151377  0.48488662
##  [64,] -12.567875 0.008695828 2.0619905  0.17064216
##  [65,] -10.053601 0.007077938 1.7327899 -0.09849666
##  [66,]  -7.874799 0.005611536 1.4435776 -0.31238050
##  [67,]  -6.144123 0.004389173 1.2080704 -0.46185422
##  [68,]  -4.929645 0.003490496 1.0342509 -0.54542654
##  [69,]  -4.194261 0.002920693 0.9200908 -0.57707337
##  [70,]  -3.804949 0.002604657 0.8529566 -0.58083162
##  [71,]  -3.616331 0.002444572 0.8164416 -0.57560382
##  [72,]  -3.528387 0.002366960 0.7973648 -0.56985890
##  [73,]  -3.487508 0.002329729 0.7875368 -0.56575388
##  [74,]  -3.468208 0.002311738 0.7824773 -0.56322543
##  [75,]  -3.458893 0.002302917 0.7798618 -0.56177241
##  [76,]  -3.454297 0.002298525 0.7785030 -0.56096736
##  [77,]  -3.451988 0.002296307 0.7777942 -0.56053040
##  [78,]  -3.450811 0.002295175 0.7774233 -0.56029608
##  [79,]  -3.450206 0.002294591 0.7772288 -0.56017135
##  [80,]  -3.449892 0.002294289 0.7771267 -0.56010524
##  [81,]  -3.449728 0.002294132 0.7770730 -0.56007031
##  [82,]  -3.449643 0.002294050 0.7770448 -0.56005188
##  [83,]  -3.449598 0.002294007 0.7770300 -0.56004217
##  [84,]  -3.449574 0.002293984 0.7770222 -0.56003706
##  [85,]  -3.449562 0.002293973 0.7770181 -0.56003437
##  [86,]  -3.449556 0.002293966 0.7770160 -0.56003296
##  [87,]  -3.449552 0.002293963 0.7770148 -0.56003221
##  [88,]  -3.449550 0.002293961 0.7770142 -0.56003182
##  [89,]  -3.449549 0.002293961 0.7770139 -0.56003162
##  [90,]  -3.449549 0.002293960 0.7770138 -0.56003151
##  [91,]  -3.449549 0.002293960 0.7770137 -0.56003145
##  [92,]  -3.449549 0.002293960 0.7770136 -0.56003142
##  [93,]  -3.449548 0.002293960 0.7770136 -0.56003140
##  [94,]  -3.449548 0.002293960 0.7770136 -0.56003140
##  [95,]  -3.449548 0.002293960 0.7770136 -0.56003139
##  [96,]  -3.449548 0.002293960 0.7770136 -0.56003139
##  [97,]  -3.449548 0.002293960 0.7770136 -0.56003139
##  [98,]  -3.449548 0.002293960 0.7770136 -0.56003139
##  [99,]  -3.449548 0.002293960 0.7770136 -0.56003139
## [100,]  -3.449548 0.002293960 0.7770136 -0.56003139
result$cov
##              [,1]          [,2]        [,3]        [,4]          [,5]
##   [1,] 20.1183171 -4.072544e-03 -4.61036173 -0.81335512 -4.072544e-03
##   [2,]  0.2460934 -5.762827e-05 -0.05453021 -0.00983559 -5.762827e-05
##   [3,]  0.2482481 -5.888648e-05 -0.05475095 -0.01005653 -5.888648e-05
##   [4,]  0.2507770 -6.020783e-05 -0.05503809 -0.01031425 -6.020783e-05
##   [5,]  0.2535742 -6.154285e-05 -0.05537671 -0.01060006 -6.154285e-05
##   [6,]  0.2564216 -6.282698e-05 -0.05572879 -0.01089698 -6.282698e-05
##   [7,]  0.2591002 -6.400280e-05 -0.05605436 -0.01118849 -6.400280e-05
##   [8,]  0.2615337 -6.505011e-05 -0.05633835 -0.01147014 -6.505011e-05
##   [9,]  0.2637951 -6.598910e-05 -0.05659171 -0.01174986 -6.598910e-05
##  [10,]  0.2659928 -6.685133e-05 -0.05683248 -0.01203710 -6.685133e-05
##  [11,]  0.2681700 -6.764948e-05 -0.05707032 -0.01233289 -6.764948e-05
##  [12,]  0.2702907 -6.837016e-05 -0.05730464 -0.01262873 -6.837016e-05
##  [13,]  0.2722953 -6.898744e-05 -0.05753257 -0.01291329 -6.898744e-05
##  [14,]  0.2741603 -6.948031e-05 -0.05775699 -0.01317962 -6.948031e-05
##  [15,]  0.2759180 -6.984342e-05 -0.05798834 -0.01342771 -6.984342e-05
##  [16,]  0.2776392 -7.009385e-05 -0.05823994 -0.01366251 -7.009385e-05
##  [17,]  0.2794006 -7.027926e-05 -0.05852022 -0.01389041 -7.027926e-05
##  [18,]  0.2812570 -7.048266e-05 -0.05882626 -0.01411624 -7.048266e-05
##  [19,]  0.2832262 -7.080562e-05 -0.05914373 -0.01434197 -7.080562e-05
##  [20,]  0.2852809 -7.131822e-05 -0.05945341 -0.01456628 -7.131822e-05
##  [21,]  0.2873490 -7.201103e-05 -0.05973964 -0.01478495 -7.201103e-05
##  [22,]  0.2893607 -7.281792e-05 -0.05999708 -0.01499411 -7.281792e-05
##  [23,]  0.2913253 -7.369357e-05 -0.06023490 -0.01519522 -7.369357e-05
##  [24,]  0.2933513 -7.464630e-05 -0.06047591 -0.01539626 -7.464630e-05
##  [25,]  0.2956163 -7.572018e-05 -0.06075259 -0.01560967 -7.572018e-05
##  [26,]  0.2983501 -7.699125e-05 -0.06110356 -0.01585156 -7.699125e-05
##  [27,]  0.3018166 -7.856894e-05 -0.06156863 -0.01614093 -7.856894e-05
##  [28,]  0.3062528 -8.056004e-05 -0.06218139 -0.01649552 -8.056004e-05
##  [29,]  0.3117949 -8.301339e-05 -0.06296273 -0.01692584 -8.301339e-05
##  [30,]  0.3184406 -8.589470e-05 -0.06391761 -0.01743188 -8.589470e-05
##  [31,]  0.3260740 -8.911353e-05 -0.06503617 -0.01800452 -8.911353e-05
##  [32,]  0.3345497 -9.258316e-05 -0.06630248 -0.01863116 -9.258316e-05
##  [33,]  0.3437711 -9.627024e-05 -0.06770357 -0.01930110 -9.627024e-05
##  [34,]  0.3536728 -1.001925e-04 -0.06922437 -0.02000618 -1.001925e-04
##  [35,]  0.3640902 -1.043390e-04 -0.07082861 -0.02073590 -1.043390e-04
##  [36,]  0.3746576 -1.085808e-04 -0.07244950 -0.02147282 -1.085808e-04
##  [37,]  0.3849375 -1.127330e-04 -0.07401208 -0.02219670 -1.127330e-04
##  [38,]  0.3947010 -1.167298e-04 -0.07547263 -0.02289547 -1.167298e-04
##  [39,]  0.4040562 -1.206876e-04 -0.07683912 -0.02357128 -1.206876e-04
##  [40,]  0.4133473 -1.248237e-04 -0.07815926 -0.02423718 -1.248237e-04
##  [41,]  0.4229433 -1.293353e-04 -0.07948902 -0.02490911 -1.293353e-04
##  [42,]  0.4330542 -1.343053e-04 -0.08086364 -0.02559794 -1.343053e-04
##  [43,]  0.4437043 -1.396955e-04 -0.08229388 -0.02630673 -1.396955e-04
##  [44,]  0.4548597 -1.454288e-04 -0.08378474 -0.02703377 -1.454288e-04
##  [45,]  0.4665259 -1.514596e-04 -0.08534773 -0.02777641 -1.514596e-04
##  [46,]  0.4787182 -1.577612e-04 -0.08699472 -0.02853092 -1.577612e-04
##  [47,]  0.4913971 -1.642794e-04 -0.08872961 -0.02929039 -1.642794e-04
##  [48,]  0.5044951 -1.709336e-04 -0.09055583 -0.03004461 -1.709336e-04
##  [49,]  0.5180468 -1.776809e-04 -0.09249866 -0.03078299 -1.776809e-04
##  [50,]  0.5323135 -1.845829e-04 -0.09462602 -0.03149723 -1.845829e-04
##  [51,]  0.5478012 -1.918176e-04 -0.09705170 -0.03218073 -1.918176e-04
##  [52,]  0.5651172 -1.996195e-04 -0.09990860 -0.03282554 -1.996195e-04
##  [53,]  0.5846322 -2.081456e-04 -0.10328101 -0.03341891 -2.081456e-04
##  [54,]  0.6060941 -2.173193e-04 -0.10712792 -0.03393973 -2.173193e-04
##  [55,]  0.6286032 -2.268089e-04 -0.11128295 -0.03435524 -2.268089e-04
##  [56,]  0.6509906 -2.361793e-04 -0.11553249 -0.03462146 -2.361793e-04
##  [57,]  0.6721873 -2.450426e-04 -0.11968808 -0.03468619 -2.450426e-04
##  [58,]  0.6915003 -2.531413e-04 -0.12364640 -0.03448975 -2.531413e-04
##  [59,]  0.7087901 -2.603755e-04 -0.12743379 -0.03396329 -2.603755e-04
##  [60,]  0.7243050 -2.666693e-04 -0.13118469 -0.03303003 -2.666693e-04
##  [61,]  0.7381337 -2.716274e-04 -0.13504765 -0.03161654 -2.716274e-04
##  [62,]  0.7496914 -2.742269e-04 -0.13908569 -0.02968022 -2.742269e-04
##  [63,]  0.7578838 -2.729691e-04 -0.14327045 -0.02725453 -2.729691e-04
##  [64,]  0.7622446 -2.666521e-04 -0.14762132 -0.02451291 -2.666521e-04
##  [65,]  0.7642818 -2.553766e-04 -0.15235193 -0.02185054 -2.553766e-04
##  [66,]  0.7676326 -2.411124e-04 -0.15779853 -0.01990419 -2.411124e-04
##  [67,]  0.7762047 -2.272355e-04 -0.16409808 -0.01930341 -2.272355e-04
##  [68,]  0.7903814 -2.166379e-04 -0.17070155 -0.02012179 -2.166379e-04
##  [69,]  0.8057094 -2.099789e-04 -0.17641568 -0.02164941 -2.099789e-04
##  [70,]  0.8175817 -2.063126e-04 -0.18039092 -0.02304308 -2.063126e-04
##  [71,]  0.8251571 -2.045245e-04 -0.18275980 -0.02397204 -2.045245e-04
##  [72,]  0.8297302 -2.037897e-04 -0.18409794 -0.02450769 -2.037897e-04
##  [73,]  0.8324690 -2.035545e-04 -0.18485074 -0.02479995 -2.035545e-04
##  [74,]  0.8340790 -2.035114e-04 -0.18527220 -0.02495630 -2.035114e-04
##  [75,]  0.8349999 -2.035247e-04 -0.18550518 -0.02503928 -2.035247e-04
##  [76,]  0.8355135 -2.035462e-04 -0.18563218 -0.02508313 -2.035462e-04
##  [77,]  0.8357944 -2.035632e-04 -0.18570061 -0.02510625 -2.035632e-04
##  [78,]  0.8359460 -2.035741e-04 -0.18573716 -0.02511843 -2.035741e-04
##  [79,]  0.8360271 -2.035806e-04 -0.18575658 -0.02512483 -2.035806e-04
##  [80,]  0.8360702 -2.035843e-04 -0.18576686 -0.02512820 -2.035843e-04
##  [81,]  0.8360930 -2.035864e-04 -0.18577228 -0.02512998 -2.035864e-04
##  [82,]  0.8361050 -2.035875e-04 -0.18577514 -0.02513091 -2.035875e-04
##  [83,]  0.8361114 -2.035881e-04 -0.18577664 -0.02513140 -2.035881e-04
##  [84,]  0.8361147 -2.035884e-04 -0.18577743 -0.02513166 -2.035884e-04
##  [85,]  0.8361165 -2.035886e-04 -0.18577785 -0.02513179 -2.035886e-04
##  [86,]  0.8361174 -2.035887e-04 -0.18577807 -0.02513186 -2.035887e-04
##  [87,]  0.8361179 -2.035887e-04 -0.18577819 -0.02513190 -2.035887e-04
##  [88,]  0.8361181 -2.035887e-04 -0.18577825 -0.02513192 -2.035887e-04
##  [89,]  0.8361183 -2.035887e-04 -0.18577828 -0.02513193 -2.035887e-04
##  [90,]  0.8361184 -2.035888e-04 -0.18577830 -0.02513194 -2.035888e-04
##  [91,]  0.8361184 -2.035888e-04 -0.18577830 -0.02513194 -2.035888e-04
##  [92,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##  [93,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##  [94,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##  [95,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##  [96,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##  [97,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##  [98,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##  [99,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
## [100,]  0.8361184 -2.035888e-04 -0.18577831 -0.02513194 -2.035888e-04
##                [,6]          [,7]         [,8]        [,9]         [,10]
##   [1,] 1.850942e-05 -2.182722e-03 2.403031e-04 -4.61036173 -2.182722e-03
##   [2,] 2.290188e-07 -2.536181e-05 3.478401e-06 -0.05453021 -2.536181e-05
##   [3,] 2.300583e-07 -2.530629e-05 3.630541e-06 -0.05475095 -2.530629e-05
##   [4,] 2.311326e-07 -2.525155e-05 3.797484e-06 -0.05503809 -2.525155e-05
##   [5,] 2.322237e-07 -2.520570e-05 3.975452e-06 -0.05537671 -2.520570e-05
##   [6,] 2.333054e-07 -2.517818e-05 4.158741e-06 -0.05572879 -2.517818e-05
##   [7,] 2.343517e-07 -2.517649e-05 4.341821e-06 -0.05605436 -2.517649e-05
##   [8,] 2.353481e-07 -2.520206e-05 4.522444e-06 -0.05633835 -2.520206e-05
##   [9,] 2.362983e-07 -2.525124e-05 4.702449e-06 -0.05659171 -2.525124e-05
##  [10,] 2.372180e-07 -2.532016e-05 4.884889e-06 -0.05683248 -2.532016e-05
##  [11,] 2.381205e-07 -2.540779e-05 5.070245e-06 -0.05707032 -2.540779e-05
##  [12,] 2.390084e-07 -2.551532e-05 5.254993e-06 -0.05730464 -2.551532e-05
##  [13,] 2.398756e-07 -2.564398e-05 5.433156e-06 -0.05753257 -2.564398e-05
##  [14,] 2.407177e-07 -2.579403e-05 5.598984e-06 -0.05775699 -2.579403e-05
##  [15,] 2.415410e-07 -2.596491e-05 5.748876e-06 -0.05798834 -2.596491e-05
##  [16,] 2.423670e-07 -2.615486e-05 5.882208e-06 -0.05823994 -2.615486e-05
##  [17,] 2.432320e-07 -2.635871e-05 6.001623e-06 -0.05852022 -2.635871e-05
##  [18,] 2.441827e-07 -2.656556e-05 6.112928e-06 -0.05882626 -2.656556e-05
##  [19,] 2.452631e-07 -2.676018e-05 6.223652e-06 -0.05914373 -2.676018e-05
##  [20,] 2.464876e-07 -2.692975e-05 6.339475e-06 -0.05945341 -2.692975e-05
##  [21,] 2.478188e-07 -2.707075e-05 6.460784e-06 -0.05973964 -2.707075e-05
##  [22,] 2.491941e-07 -2.718826e-05 6.583951e-06 -0.05999708 -2.718826e-05
##  [23,] 2.505877e-07 -2.728885e-05 6.706471e-06 -0.06023490 -2.728885e-05
##  [24,] 2.520256e-07 -2.737565e-05 6.829284e-06 -0.06047591 -2.737565e-05
##  [25,] 2.535598e-07 -2.744834e-05 6.955889e-06 -0.06075259 -2.744834e-05
##  [26,] 2.552665e-07 -2.750427e-05 7.092695e-06 -0.06110356 -2.750427e-05
##  [27,] 2.572548e-07 -2.754015e-05 7.249697e-06 -0.06156863 -2.754015e-05
##  [28,] 2.596384e-07 -2.755512e-05 7.437781e-06 -0.06218139 -2.755512e-05
##  [29,] 2.624801e-07 -2.755245e-05 7.663723e-06 -0.06296273 -2.755245e-05
##  [30,] 2.657632e-07 -2.753889e-05 7.927060e-06 -0.06391761 -2.753889e-05
##  [31,] 2.694170e-07 -2.752243e-05 8.221240e-06 -0.06503617 -2.752243e-05
##  [32,] 2.733778e-07 -2.750950e-05 8.537735e-06 -0.06630248 -2.750950e-05
##  [33,] 2.776351e-07 -2.750211e-05 8.869874e-06 -0.06770357 -2.750211e-05
##  [34,] 2.822156e-07 -2.749703e-05 9.214176e-06 -0.06922437 -2.749703e-05
##  [35,] 2.870849e-07 -2.748910e-05 9.568122e-06 -0.07082861 -2.748910e-05
##  [36,] 2.920529e-07 -2.747686e-05 9.926326e-06 -0.07244950 -2.747686e-05
##  [37,] 2.968647e-07 -2.746155e-05 1.028134e-05 -0.07401208 -2.746155e-05
##  [38,] 3.014082e-07 -2.743889e-05 1.062934e-05 -0.07547263 -2.743889e-05
##  [39,] 3.057775e-07 -2.739486e-05 1.097291e-05 -0.07683912 -2.739486e-05
##  [40,] 3.101796e-07 -2.731009e-05 1.131857e-05 -0.07815926 -2.731009e-05
##  [41,] 3.148132e-07 -2.716945e-05 1.167268e-05 -0.07948902 -2.716945e-05
##  [42,] 3.197839e-07 -2.697069e-05 1.203790e-05 -0.08086364 -2.697069e-05
##  [43,] 3.250906e-07 -2.672327e-05 1.241246e-05 -0.08229388 -2.672327e-05
##  [44,] 3.306851e-07 -2.643767e-05 1.279269e-05 -0.08378474 -2.643767e-05
##  [45,] 3.365326e-07 -2.611861e-05 1.317570e-05 -0.08534773 -2.611861e-05
##  [46,] 3.426131e-07 -2.576865e-05 1.355941e-05 -0.08699472 -2.576865e-05
##  [47,] 3.488909e-07 -2.539439e-05 1.394061e-05 -0.08872961 -2.539439e-05
##  [48,] 3.553162e-07 -2.500579e-05 1.431427e-05 -0.09055583 -2.500579e-05
##  [49,] 3.618694e-07 -2.460724e-05 1.467475e-05 -0.09249866 -2.460724e-05
##  [50,] 3.686047e-07 -2.418791e-05 1.501725e-05 -0.09462602 -2.418791e-05
##  [51,] 3.756511e-07 -2.371826e-05 1.533745e-05 -0.09705170 -2.371826e-05
##  [52,] 3.831609e-07 -2.315610e-05 1.562972e-05 -0.09990860 -2.315610e-05
##  [53,] 3.912142e-07 -2.246543e-05 1.588537e-05 -0.10328101 -2.246543e-05
##  [54,] 3.997252e-07 -2.164209e-05 1.609122e-05 -0.10712792 -2.164209e-05
##  [55,] 4.084639e-07 -2.072295e-05 1.622852e-05 -0.11128295 -2.072295e-05
##  [56,] 4.172135e-07 -1.977225e-05 1.627312e-05 -0.11553249 -1.977225e-05
##  [57,] 4.259202e-07 -1.886786e-05 1.619623e-05 -0.11968808 -1.886786e-05
##  [58,] 4.347632e-07 -1.809100e-05 1.596352e-05 -0.12364640 -1.809100e-05
##  [59,] 4.441694e-07 -1.752008e-05 1.553291e-05 -0.12743379 -1.752008e-05
##  [60,] 4.547289e-07 -1.725183e-05 1.485421e-05 -0.13118469 -1.725183e-05
##  [61,] 4.670016e-07 -1.746349e-05 1.387401e-05 -0.13504765 -1.746349e-05
##  [62,] 4.814440e-07 -1.849026e-05 1.254694e-05 -0.13908569 -1.849026e-05
##  [63,] 4.987526e-07 -2.085709e-05 1.085664e-05 -0.14327045 -2.085709e-05
##  [64,] 5.204011e-07 -2.518726e-05 8.864372e-06 -0.14762132 -2.518726e-05
##  [65,] 5.484120e-07 -3.192786e-05 6.805690e-06 -0.15235193 -3.192786e-05
##  [66,] 5.838113e-07 -4.093527e-05 5.153655e-06 -0.15779853 -4.093527e-05
##  [67,] 6.245716e-07 -5.113168e-05 4.407305e-06 -0.16409808 -5.113168e-05
##  [68,] 6.649320e-07 -6.073590e-05 4.632175e-06 -0.17070155 -6.073590e-05
##  [69,] 6.979010e-07 -6.820199e-05 5.365730e-06 -0.17641568 -6.820199e-05
##  [70,] 7.199238e-07 -7.303124e-05 6.087846e-06 -0.18039092 -7.303124e-05
##  [71,] 7.326195e-07 -7.574779e-05 6.581494e-06 -0.18275980 -7.574779e-05
##  [72,] 7.395312e-07 -7.717350e-05 6.866039e-06 -0.18409794 -7.717350e-05
##  [73,] 7.432771e-07 -7.790827e-05 7.018697e-06 -0.18485074 -7.790827e-05
##  [74,] 7.453120e-07 -7.828736e-05 7.098542e-06 -0.18527220 -7.828736e-05
##  [75,] 7.464137e-07 -7.848381e-05 7.140014e-06 -0.18550518 -7.848381e-05
##  [76,] 7.470063e-07 -7.858601e-05 7.161551e-06 -0.18563218 -7.858601e-05
##  [77,] 7.473230e-07 -7.863932e-05 7.172755e-06 -0.18570061 -7.863932e-05
##  [78,] 7.474913e-07 -7.866720e-05 7.178598e-06 -0.18573716 -7.866720e-05
##  [79,] 7.475805e-07 -7.868179e-05 7.181650e-06 -0.18575658 -7.868179e-05
##  [80,] 7.476277e-07 -7.868944e-05 7.183248e-06 -0.18576686 -7.868944e-05
##  [81,] 7.476525e-07 -7.869346e-05 7.184085e-06 -0.18577228 -7.869346e-05
##  [82,] 7.476656e-07 -7.869556e-05 7.184524e-06 -0.18577514 -7.869556e-05
##  [83,] 7.476725e-07 -7.869667e-05 7.184755e-06 -0.18577664 -7.869667e-05
##  [84,] 7.476762e-07 -7.869725e-05 7.184876e-06 -0.18577743 -7.869725e-05
##  [85,] 7.476781e-07 -7.869756e-05 7.184939e-06 -0.18577785 -7.869756e-05
##  [86,] 7.476791e-07 -7.869772e-05 7.184973e-06 -0.18577807 -7.869772e-05
##  [87,] 7.476796e-07 -7.869780e-05 7.184990e-06 -0.18577819 -7.869780e-05
##  [88,] 7.476799e-07 -7.869785e-05 7.185000e-06 -0.18577825 -7.869785e-05
##  [89,] 7.476800e-07 -7.869787e-05 7.185004e-06 -0.18577828 -7.869787e-05
##  [90,] 7.476801e-07 -7.869788e-05 7.185007e-06 -0.18577830 -7.869788e-05
##  [91,] 7.476802e-07 -7.869789e-05 7.185008e-06 -0.18577830 -7.869789e-05
##  [92,] 7.476802e-07 -7.869789e-05 7.185009e-06 -0.18577831 -7.869789e-05
##  [93,] 7.476802e-07 -7.869790e-05 7.185009e-06 -0.18577831 -7.869790e-05
##  [94,] 7.476802e-07 -7.869790e-05 7.185010e-06 -0.18577831 -7.869790e-05
##  [95,] 7.476802e-07 -7.869790e-05 7.185010e-06 -0.18577831 -7.869790e-05
##  [96,] 7.476802e-07 -7.869790e-05 7.185010e-06 -0.18577831 -7.869790e-05
##  [97,] 7.476802e-07 -7.869790e-05 7.185010e-06 -0.18577831 -7.869790e-05
##  [98,] 7.476802e-07 -7.869790e-05 7.185010e-06 -0.18577831 -7.869790e-05
##  [99,] 7.476802e-07 -7.869790e-05 7.185010e-06 -0.18577831 -7.869790e-05
## [100,] 7.476802e-07 -7.869790e-05 7.185010e-06 -0.18577831 -7.869790e-05
##             [,11]         [,12]       [,13]        [,14]         [,15]
##   [1,] 1.69493752  0.0229414838 -0.81335512 2.403031e-04  0.0229414838
##   [2,] 0.02038305  0.0001271585 -0.00983559 3.478401e-06  0.0001271585
##   [3,] 0.02042402  0.0001434648 -0.01005653 3.630541e-06  0.0001434648
##   [4,] 0.02048113  0.0001637805 -0.01031425 3.797484e-06  0.0001637805
##   [5,] 0.02055270  0.0001866301 -0.01060006 3.975452e-06  0.0001866301
##   [6,] 0.02063183  0.0002090064 -0.01089698 4.158741e-06  0.0002090064
##   [7,] 0.02071067  0.0002279512 -0.01118849 4.341821e-06  0.0002279512
##   [8,] 0.02078585  0.0002425391 -0.01147014 4.522444e-06  0.0002425391
##   [9,] 0.02085904  0.0002537960 -0.01174986 4.702449e-06  0.0002537960
##  [10,] 0.02093375  0.0002630108 -0.01203710 4.884889e-06  0.0002630108
##  [11,] 0.02101240  0.0002704676 -0.01233289 5.070245e-06  0.0002704676
##  [12,] 0.02109560  0.0002755487 -0.01262873 5.254993e-06  0.0002755487
##  [13,] 0.02118318  0.0002777094 -0.01291329 5.433156e-06  0.0002777094
##  [14,] 0.02127577  0.0002772642 -0.01317962 5.598984e-06  0.0002772642
##  [15,] 0.02137525  0.0002754036 -0.01342771 5.748876e-06  0.0002754036
##  [16,] 0.02148391  0.0002736246 -0.01366251 5.882208e-06  0.0002736246
##  [17,] 0.02160233  0.0002730081 -0.01389041 6.001623e-06  0.0002730081
##  [18,] 0.02172761  0.0002737174 -0.01411624 6.112928e-06  0.0002737174
##  [19,] 0.02185354  0.0002750124 -0.01434197 6.223652e-06  0.0002750124
##  [20,] 0.02197323  0.0002757769 -0.01456628 6.339475e-06  0.0002757769
##  [21,] 0.02208223  0.0002751566 -0.01478495 6.460784e-06  0.0002751566
##  [22,] 0.02217998  0.0002730297 -0.01499411 6.583951e-06  0.0002730297
##  [23,] 0.02226953  0.0002702377 -0.01519522 6.706471e-06  0.0002702377
##  [24,] 0.02235655  0.0002684583 -0.01539626 6.829284e-06  0.0002684583
##  [25,] 0.02244845  0.0002698780 -0.01560967 6.955889e-06  0.0002698780
##  [26,] 0.02255378  0.0002769241 -0.01585156 7.092695e-06  0.0002769241
##  [27,] 0.02268136  0.0002919569 -0.01614093 7.249697e-06  0.0002919569
##  [28,] 0.02283907  0.0003168162 -0.01649552 7.437781e-06  0.0003168162
##  [29,] 0.02303265  0.0003524544 -0.01692584 7.663723e-06  0.0003524544
##  [30,] 0.02326469  0.0003988108 -0.01743188 7.927060e-06  0.0003988108
##  [31,] 0.02353449  0.0004549668 -0.01800452 8.221240e-06  0.0004549668
##  [32,] 0.02383964  0.0005196742 -0.01863116 8.537735e-06  0.0005196742
##  [33,] 0.02417760  0.0005918806 -0.01930110 8.869874e-06  0.0005918806
##  [34,] 0.02454432  0.0006705534 -0.02000618 9.214176e-06  0.0006705534
##  [35,] 0.02493012  0.0007538041 -0.02073590 9.568122e-06  0.0007538041
##  [36,] 0.02531837  0.0008384151 -0.02147282 9.926326e-06  0.0008384151
##  [37,] 0.02569096  0.0009207734 -0.02219670 1.028134e-05  0.0009207734
##  [38,] 0.02603649  0.0009986381 -0.02289547 1.062934e-05  0.0009986381
##  [39,] 0.02635455  0.0010721636 -0.02357128 1.097291e-05  0.0010721636
##  [40,] 0.02665335  0.0011435193 -0.02423718 1.131857e-05  0.0011435193
##  [41,] 0.02694360  0.0012156116 -0.02490911 1.167268e-05  0.0012156116
##  [42,] 0.02723286  0.0012907635 -0.02559794 1.203790e-05  0.0012907635
##  [43,] 0.02752478  0.0013701783 -0.02630673 1.241246e-05  0.0013701783
##  [44,] 0.02782222  0.0014542981 -0.02703377 1.279269e-05  0.0014542981
##  [45,] 0.02812914  0.0015432401 -0.02777641 1.317570e-05  0.0015432401
##  [46,] 0.02844951  0.0016367590 -0.02853092 1.355941e-05  0.0016367590
##  [47,] 0.02878628  0.0017340343 -0.02929039 1.394061e-05  0.0017340343
##  [48,] 0.02914316  0.0018338016 -0.03004461 1.431427e-05  0.0018338016
##  [49,] 0.02952889  0.0019348751 -0.03078299 1.467475e-05  0.0019348751
##  [50,] 0.02996092  0.0020365785 -0.03149723 1.501725e-05  0.0020365785
##  [51,] 0.03046574  0.0021386968 -0.03218073 1.533745e-05  0.0021386968
##  [52,] 0.03107281  0.0022410584 -0.03282554 1.562972e-05  0.0022410584
##  [53,] 0.03179941  0.0023430066 -0.03341891 1.588537e-05  0.0023430066
##  [54,] 0.03263450  0.0024426497 -0.03393973 1.609122e-05  0.0024426497
##  [55,] 0.03354123  0.0025359580 -0.03435524 1.622852e-05  0.0025359580
##  [56,] 0.03447653  0.0026165100 -0.03462146 1.627312e-05  0.0026165100
##  [57,] 0.03540847  0.0026758165 -0.03468619 1.619623e-05  0.0026758165
##  [58,] 0.03633085  0.0027032667 -0.03448975 1.596352e-05  0.0027032667
##  [59,] 0.03727450  0.0026856945 -0.03396329 1.553291e-05  0.0026856945
##  [60,] 0.03830530  0.0026073242 -0.03303003 1.485421e-05  0.0026073242
##  [61,] 0.03950890  0.0024510654 -0.03161654 1.387401e-05  0.0024510654
##  [62,] 0.04097574  0.0022019611 -0.02968022 1.254694e-05  0.0022019611
##  [63,] 0.04280259  0.0018524761 -0.02725453 1.085664e-05  0.0018524761
##  [64,] 0.04511076  0.0014086001 -0.02451291 8.864372e-06  0.0014086001
##  [65,] 0.04803065  0.0008981730 -0.02185054 6.805690e-06  0.0008981730
##  [66,] 0.05159855  0.0003803998 -0.01990419 5.153655e-06  0.0003803998
##  [67,] 0.05560123 -0.0000537485 -0.01930341 4.407305e-06 -0.0000537485
##  [68,] 0.05950089 -0.0003205564 -0.02012179 4.632175e-06 -0.0003205564
##  [69,] 0.06265682 -0.0004168764 -0.02164941 5.365730e-06 -0.0004168764
##  [70,] 0.06475747 -0.0004146944 -0.02304308 6.087846e-06 -0.0004146944
##  [71,] 0.06596819 -0.0003836240 -0.02397204 6.581494e-06 -0.0003836240
##  [72,] 0.06662646 -0.0003552504 -0.02450769 6.866039e-06 -0.0003552504
##  [73,] 0.06698166 -0.0003361819 -0.02479995 7.018697e-06 -0.0003361819
##  [74,] 0.06717344 -0.0003247938 -0.02495630 7.098542e-06 -0.0003247938
##  [75,] 0.06727661 -0.0003183608 -0.02503928 7.140014e-06 -0.0003183608
##  [76,] 0.06733179 -0.0003148313 -0.02508313 7.161551e-06 -0.0003148313
##  [77,] 0.06736115 -0.0003129260 -0.02510625 7.172755e-06 -0.0003129260
##  [78,] 0.06737671 -0.0003119074 -0.02511843 7.178598e-06 -0.0003119074
##  [79,] 0.06738493 -0.0003113660 -0.02512483 7.181650e-06 -0.0003113660
##  [80,] 0.06738926 -0.0003110792 -0.02512820 7.183248e-06 -0.0003110792
##  [81,] 0.06739154 -0.0003109277 -0.02512998 7.184085e-06 -0.0003109277
##  [82,] 0.06739275 -0.0003108478 -0.02513091 7.184524e-06 -0.0003108478
##  [83,] 0.06739338 -0.0003108057 -0.02513140 7.184755e-06 -0.0003108057
##  [84,] 0.06739371 -0.0003107835 -0.02513166 7.184876e-06 -0.0003107835
##  [85,] 0.06739388 -0.0003107718 -0.02513179 7.184939e-06 -0.0003107718
##  [86,] 0.06739398 -0.0003107657 -0.02513186 7.184973e-06 -0.0003107657
##  [87,] 0.06739402 -0.0003107625 -0.02513190 7.184990e-06 -0.0003107625
##  [88,] 0.06739405 -0.0003107608 -0.02513192 7.185000e-06 -0.0003107608
##  [89,] 0.06739406 -0.0003107599 -0.02513193 7.185004e-06 -0.0003107599
##  [90,] 0.06739407 -0.0003107594 -0.02513194 7.185007e-06 -0.0003107594
##  [91,] 0.06739407 -0.0003107591 -0.02513194 7.185008e-06 -0.0003107591
##  [92,] 0.06739408 -0.0003107590 -0.02513194 7.185009e-06 -0.0003107590
##  [93,] 0.06739408 -0.0003107590 -0.02513194 7.185009e-06 -0.0003107590
##  [94,] 0.06739408 -0.0003107589 -0.02513194 7.185010e-06 -0.0003107589
##  [95,] 0.06739408 -0.0003107589 -0.02513194 7.185010e-06 -0.0003107589
##  [96,] 0.06739408 -0.0003107589 -0.02513194 7.185010e-06 -0.0003107589
##  [97,] 0.06739408 -0.0003107589 -0.02513194 7.185010e-06 -0.0003107589
##  [98,] 0.06739408 -0.0003107589 -0.02513194 7.185010e-06 -0.0003107589
##  [99,] 0.06739408 -0.0003107589 -0.02513194 7.185010e-06 -0.0003107589
## [100,] 0.06739408 -0.0003107589 -0.02513194 7.185010e-06 -0.0003107589
##              [,16]
##   [1,] 0.341336070
##   [2,] 0.002943093
##   [3,] 0.002968335
##   [4,] 0.002998336
##   [5,] 0.003032607
##   [6,] 0.003069995
##   [7,] 0.003109424
##   [8,] 0.003150890
##   [9,] 0.003195489
##  [10,] 0.003244307
##  [11,] 0.003297273
##  [12,] 0.003352967
##  [13,] 0.003409432
##  [14,] 0.003465146
##  [15,] 0.003519469
##  [16,] 0.003572475
##  [17,] 0.003624530
##  [18,] 0.003675902
##  [19,] 0.003726584
##  [20,] 0.003776280
##  [21,] 0.003824495
##  [22,] 0.003870812
##  [23,] 0.003915248
##  [24,] 0.003958330
##  [25,] 0.004000950
##  [26,] 0.004044333
##  [27,] 0.004090003
##  [28,] 0.004139461
##  [29,] 0.004193678
##  [30,] 0.004252771
##  [31,] 0.004316082
##  [32,] 0.004382586
##  [33,] 0.004451294
##  [34,] 0.004521396
##  [35,] 0.004592109
##  [36,] 0.004662482
##  [37,] 0.004731521
##  [38,] 0.004798597
##  [39,] 0.004863688
##  [40,] 0.004927241
##  [41,] 0.004989823
##  [42,] 0.005051775
##  [43,] 0.005113064
##  [44,] 0.005173374
##  [45,] 0.005232274
##  [46,] 0.005289249
##  [47,] 0.005343634
##  [48,] 0.005394592
##  [49,] 0.005441188
##  [50,] 0.005482465
##  [51,] 0.005517404
##  [52,] 0.005544778
##  [53,] 0.005563015
##  [54,] 0.005570229
##  [55,] 0.005564455
##  [56,] 0.005544068
##  [57,] 0.005508333
##  [58,] 0.005458033
##  [59,] 0.005396183
##  [60,] 0.005329041
##  [61,] 0.005268078
##  [62,] 0.005233990
##  [63,] 0.005263199
##  [64,] 0.005413782
##  [65,] 0.005761703
##  [66,] 0.006374739
##  [67,] 0.007250778
##  [68,] 0.008241222
##  [69,] 0.009087222
##  [70,] 0.009626272
##  [71,] 0.009898778
##  [72,] 0.010021880
##  [73,] 0.010076928
##  [74,] 0.010102416
##  [75,] 0.010114693
##  [76,] 0.010120789
##  [77,] 0.010123879
##  [78,] 0.010125465
##  [79,] 0.010126287
##  [80,] 0.010126715
##  [81,] 0.010126938
##  [82,] 0.010127055
##  [83,] 0.010127117
##  [84,] 0.010127149
##  [85,] 0.010127166
##  [86,] 0.010127174
##  [87,] 0.010127179
##  [88,] 0.010127182
##  [89,] 0.010127183
##  [90,] 0.010127184
##  [91,] 0.010127184
##  [92,] 0.010127184
##  [93,] 0.010127184
##  [94,] 0.010127184
##  [95,] 0.010127184
##  [96,] 0.010127184
##  [97,] 0.010127184
##  [98,] 0.010127184
##  [99,] 0.010127184
## [100,] 0.010127184
result$beta[iter,] # Final Estimates
## [1] -3.44954840  0.00229396  0.77701357 -0.56003139
matrix(result$cov[iter,],4,4) # Final Covariance Estimates
##               [,1]          [,2]          [,3]          [,4]
## [1,]  0.8361184299 -2.035888e-04 -0.1857783138 -2.513194e-02
## [2,] -0.0002035888  7.476802e-07 -0.0000786979  7.185010e-06
## [3,] -0.1857783138 -7.869790e-05  0.0673940779 -3.107589e-04
## [4,] -0.0251319410  7.185010e-06 -0.0003107589  1.012718e-02
############### 3. EM Algorithm ###############
# Read the data
data = as.matrix(scan("mixture data.txt"))
class(data)
## [1] "matrix"
head(data,10)
##             [,1]
##  [1,] -1.6273898
##  [2,] -1.4238937
##  [3,] -0.6787816
##  [4,] -2.2420957
##  [5,] -1.8670102
##  [6,] -1.9708137
##  [7,] -2.0132615
##  [8,] -0.1043120
##  [9,] -2.4802637
## [10,] -1.2142840
n = length(data)
iter = 30; mu1 = -1.5; mu2 = 1.5; sigma = 0.5; # Parameters
delta = c(); delta[1] = 0.5 # Initial values
EU <- c()

# Expectation-Maximization Algorithm
for(k in 1:iter){
  for(i in 1:n){
    EU[i] <- delta[k] * dnorm(data[i],mu1,sigma)/((1-delta[k]) * dnorm(data[i],mu2,sigma) + delta[k] * dnorm(data[i],mu1,sigma))
  }
  delta[k+1] = sum(EU)/n
}
delta <- as.matrix(delta)
delta
##            [,1]
##  [1,] 0.5000000
##  [2,] 0.7480462
##  [3,] 0.7499138
##  [4,] 0.7499282
##  [5,] 0.7499283
##  [6,] 0.7499283
##  [7,] 0.7499283
##  [8,] 0.7499283
##  [9,] 0.7499283
## [10,] 0.7499283
## [11,] 0.7499283
## [12,] 0.7499283
## [13,] 0.7499283
## [14,] 0.7499283
## [15,] 0.7499283
## [16,] 0.7499283
## [17,] 0.7499283
## [18,] 0.7499283
## [19,] 0.7499283
## [20,] 0.7499283
## [21,] 0.7499283
## [22,] 0.7499283
## [23,] 0.7499283
## [24,] 0.7499283
## [25,] 0.7499283
## [26,] 0.7499283
## [27,] 0.7499283
## [28,] 0.7499283
## [29,] 0.7499283
## [30,] 0.7499283
## [31,] 0.7499283
plot(delta, type ="l", main="", xlab="EM Iteration for the Mixture Data")

############### 4. Metropolis-Hasting Algorithm ###############
n = 10500; burnin = 1:500; # Burn-in
s = 0.01; x.init1 = -3; x.init2 = -1.5; x.init3 = 2; # Starting points

f = function(x){0.6*dnorm(x,-1.5,0.5)+0.4*dnorm(x,1.5,0.5)}
x = seq(-4,4,by=0.01); 
plot(x,f(x),type="l")

MCMC = function(x.init,s,n,f){
  x = NULL; x[1] = x.init;
  for(i in 1:(n-1)){
    x[i+1] = rnorm(1,x[i],s)
    MH.ratio = f(x[i+1])/f(x[i])
    u = runif(1)
    if(u > MH.ratio){x[i+1] = x[i]}
  }
  return(x)
}

x.set1 = MCMC(x.init1, s, n, f)
x.set2 = MCMC(x.init2, s, n, f)
x.set3 = MCMC(x.init3, s, n, f)

mean(x.set1[-burnin])
## [1] -2.15861
plot(x.set1[-burnin],type="l",ylab="x",xlab="t")

acf(x.set1)

par(mfrow=c(1,1))
z = seq(-4,4,by=0.01)
hist(x.set1[-burnin],breaks=50,freq=FALSE,xlab="x",main="Histogram of Mixture Data",ylab="Density")
points(z,f(z),type="l")
abline(v=-1.5);abline(v=1.5) # Highlight the approximate modes of the true distribution

mean(x.set2[-burnin])
## [1] -1.486066
plot(x.set2[-burnin],type="l",ylab="x",xlab="t")

acf(x.set2)

par(mfrow=c(1,1))
z = seq(-4,4,by=0.01)
hist(x.set2[-burnin],breaks=50,freq=FALSE,xlab="x",main="Histogram of Mixture Data",ylab="Density")
points(z,f(z),type="l")
abline(v=-1.5);abline(v=1.5) # Highlight the approximate modes of the true distribution

mean(x.set3[-burnin])
## [1] 2.33435
plot(x.set3[-burnin],type="l",ylab="x",xlab="t")

acf(x.set3)

par(mfrow=c(1,1))
z = seq(-4,4,by=0.01)
hist(x.set3[-burnin],breaks=50,freq=FALSE,xlab="x",main="Histogram of Mixture Data",ylab="Density")
points(z,f(z),type="l")
abline(v=-1.5);abline(v=1.5) # Highlight the approximate modes of the true distribution

# Reset the variance
s = 1.5
x.set1 = MCMC(x.init1, s, n, f)
x.set2 = MCMC(x.init2, s, n, f)
x.set3 = MCMC(x.init3, s, n, f)

mean(x.set1[-burnin])
## [1] -0.354797
plot(x.set1[-burnin],type="l",ylab="x",xlab="t")

acf(x.set1)

par(mfrow=c(1,1))
z = seq(-4,4,by=0.01)
hist(x.set1[-burnin],breaks=50,freq=FALSE,xlab="x",main="Histogram of Mixture Data",ylab="Density")
points(z,f(z),type="l")
abline(v=-1.5);abline(v=1.5) # Highlight the approximate modes of the true distribution

mean(x.set2[-burnin])
## [1] -0.3337031
plot(x.set2[-burnin],type="l",ylab="x",xlab="t")

acf(x.set2)

par(mfrow=c(1,1))
z = seq(-4,4,by=0.01)
hist(x.set2[-burnin],breaks=50,freq=FALSE,xlab="x",main="Histogram of Mixture Data",ylab="Density")
points(z,f(z),type="l")
abline(v=-1.5);abline(v=1.5) # Highlight the approximate modes of the true distribution

mean(x.set3[-burnin])
## [1] -0.26175
plot(x.set3[-burnin],type="l",ylab="x",xlab="t")

acf(x.set3)

par(mfrow=c(1,1))
z = seq(-4,4,by=0.01)
hist(x.set3[-burnin],breaks=50,freq=FALSE,xlab="x",main="Histogram of Mixture Data",ylab="Density")
points(z,f(z),type="l")
abline(v=-1.5);abline(v=1.5) # Highlight the approximate modes of the true distribution

############### 5. Gibbs Sampler ###############
# Read in data
data = read.table("Gibbs.txt", header = TRUE)
Y <- data$Y
x <- data$X
n = length(x)
# Initialize constants and parameters
set.seed(50)
N <- 12000      # length of chain
burn <- 2000     # burn-in length
taua = 0.001; taub = 0.001; alpha0 = 0.001; beta0 = 0.001;
alpha <- rep(0, N); beta <- rep(0, N); gamma <- rep(0, N);
alpha[1] <- rnorm(1,0,sqrt(1/taua)) 
beta[1] <- rnorm(1,0,sqrt(1/taub))
gamma[1] <- rgamma(1,shape=alpha0,scale=beta0)

for (i in 2:N) {
  a1 = c(); a2 = c(); a3 = c(); a4 = c() # Compute the sums
  for(j in 1:n){
    a1[j] = Y[j]-beta[i]*x[j]
    a2[j] = (x[j])^2
    a3[j] = (Y[j]-alpha[i])*x[j]
    a4[j] = (Y[j]-alpha[i]-beta[i]*x[j])^2
  }
  # sample the alpha direction conditional on beta and gamma
  alpha[i] <- rnorm(1,gamma[i]*sum(a1)/(n*gamma[i]+taua),1/(n*gamma[i]+taua))
  # sample the beta direction conditional on alpha and gamma
  beta[i] <- rnorm(1,gamma[i]*sum(a3)/(gamma[i]*sum(a2)+taub),1/(gamma[i]*sum(a2)+taub))
  # sample the gamma direction conditional on alpha and beta
  gamma[i] <- rgamma(1, shape = alpha0+0.5*n, scale = beta0 + 0.5*sum(a4))
}

b <- burn + 1 # burn-in
parameters <- cbind(alpha,beta,gamma) # the chain, a bivariate sample
para <- parameters[b:N, ]

# compare sample statistics to parameters
colMeans(para)
##       alpha        beta       gamma 
##   3.3567376  -0.1949705 773.5494810
cov(para)
##             alpha         beta       gamma
## alpha 1012463.951  -17087.6678   3934.3119
## beta   -17087.668 1013277.5316    389.9635
## gamma    3934.312     389.9635 198844.7251
cor(para)
##              alpha          beta        gamma
## alpha  1.000000000 -0.0168705330 0.0087684325
## beta  -0.016870533  1.0000000000 0.0008687658
## gamma  0.008768432  0.0008687658 1.0000000000
# 3D Scatterplot
library(scatterplot3d)
## Warning: package 'scatterplot3d' was built under R version 3.2.3
scatterplot3d(para, main="3D Scatterplot")