── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#Data menggunakan persentase kemiskinan DIY tahun 2024 BPS#set directorysetwd("D:/FREDITA MAGISTER STAT/Sains Data/Praktikum Sains Data/data-spasial-sains-data")
Import data spasial yaitu kabupaten/kota di Seluruh Indonesia dengan format shp
#Import data spasialkab_indo <-st_read("Admin2Kabupaten/idn_admbnda_adm2_bps_20200401.shp")
Reading layer `idn_admbnda_adm2_bps_20200401' from data source
`D:\FREDITA MAGISTER STAT\Sains Data\Praktikum Sains Data\data-spasial-sains-data\Admin2Kabupaten\idn_admbnda_adm2_bps_20200401.shp'
using driver `ESRI Shapefile'
Simple feature collection with 522 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 95.01079 ymin: -11.00762 xmax: 141.0194 ymax: 6.07693
Geodetic CRS: WGS 84
kab_indo
Simple feature collection with 522 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 95.01079 ymin: -11.00762 xmax: 141.0194 ymax: 6.07693
Geodetic CRS: WGS 84
First 10 features:
Shape_Leng Shape_Area ADM2_EN ADM2_PCODE ADM2_REF ADM2ALT1EN
1 2.360029 0.2289681 Aceh Barat ID1107 <NA> <NA>
2 1.963994 0.1541359 Aceh Barat Daya ID1112 <NA> <NA>
3 4.590182 0.2363958 Aceh Besar ID1108 <NA> <NA>
4 3.287754 0.3161611 Aceh Jaya ID1116 <NA> <NA>
5 4.448584 0.3430383 Aceh Selatan ID1103 <NA> <NA>
6 4.907219 0.1534414 Aceh Singkil ID1102 <NA> <NA>
7 2.593385 0.1745672 Aceh Tamiang ID1114 <NA> <NA>
8 3.676889 0.3834894 Aceh Tengah ID1106 <NA> <NA>
9 3.473021 0.3374562 Aceh Tenggara ID1104 <NA> <NA>
10 5.037148 0.4434042 Aceh Timur ID1105 <NA> <NA>
ADM2ALT2EN ADM1_EN ADM1_PCODE ADM0_EN ADM0_PCODE date validOn
1 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
2 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
3 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
4 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
5 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
6 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
7 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
8 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
9 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
10 <NA> Aceh ID11 Indonesia ID 2019-12-20 2020-04-01
validTo geometry
1 <NA> MULTIPOLYGON (((96.26836 4....
2 <NA> MULTIPOLYGON (((96.80559 3....
3 <NA> MULTIPOLYGON (((95.20544 5....
4 <NA> MULTIPOLYGON (((95.58431 4....
5 <NA> MULTIPOLYGON (((97.59461 2....
6 <NA> MULTIPOLYGON (((97.39178 2....
7 <NA> MULTIPOLYGON (((98.27612 4....
8 <NA> MULTIPOLYGON (((96.64762 4....
9 <NA> MULTIPOLYGON (((97.82461 3....
10 <NA> MULTIPOLYGON (((98.01772 4....
Kemudian, import data persentase kemiskinan di Provinsi DIY Tahun 2024, data yang digunakan diambil dari BPS
#import data tabularpov_diy <-read_csv("poverty-2024.csv")
Rows: 552 Columns: 2
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Nama Wilayah
dbl (1): Persentase
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Kita akan mengambil hanya data kabupaten/kota dari Provinsi DIY saya, sehingga gunakan code berikut untuk mengambil baris tersebut, kemudian melihat tipe datanya dengan fungsi glimpse()