Question 4

Step 1: Write the Likelihood Function

The support of each \(X_i\) is \((\theta - 1/2, \theta + 1/2)\). The joint density is: \[ L(\theta) = \prod_{i=1}^n f(x_i; \theta) = \begin{cases} 1, & \text{if } \theta - \frac{1}{2} < x_i < \theta + \frac{1}{2} \text{ for all } i \\ 0, & \text{otherwise} \end{cases} \] So, \(L(\theta) = 1\) if and only if all \(x_i\) are in \((\theta - 1/2, \theta + 1/2)\).


Step 2: Rewrite the Condition in Terms of Order Statistics

The condition that all \(x_i \in (\theta - 1/2, \theta + 1/2)\) is equivalent to: \[ \theta - \frac{1}{2} < Y_1 \quad \text{and} \quad Y_n < \theta + \frac{1}{2} \] Rearranging: \[ Y_n - \frac{1}{2} < \theta < Y_1 + \frac{1}{2} \]


Step 3: Interpret the Likelihood

The likelihood is 1 for all \(\theta\) in the interval \((Y_n - 1/2, Y_1 + 1/2)\), and 0 otherwise. Therefore, every\(\theta\) in this interval maximizes the likelihood (since the likelihood is constant and maximal on this interval). Hence, any value in this interval is an MLE.

A statistic \(u(X_1, \dots, X_n)\) is an MLE if it lies in this interval, i.e., \[ Y_n - \frac{1}{2} \leq u \leq Y_1 + \frac{1}{2} \]


Step 4: Examples

Given examples: - \(\frac{4Y_1 + 2Y_n + 1}{6}\) - \(\frac{Y_1 + Y_n}{2}\) - \(\frac{2Y_1 + 4Y_n - 1}{6}\)

We can check that each lies between \(Y_n - 1/2\) and \(Y_1 + 1/2\). For instance, \(\frac{Y_1 + Y_n}{2}\) is the midpoint and clearly in the interval.

Therefore, these are all MLEs, and the MLE is not unique.


Question 5

Step 1: Write the Likelihood Function

\[ L(\theta) = \prod_{i=1}^n f(x_i | \theta) = \prod_{i=1}^n \theta x_i^{-2} = \theta^n \prod_{i=1}^n x_i^{-2} \]


Step 2: Incorporate the Support

The support is \(\theta \leq x_i < \infty\) for all \(i\). So, for the likelihood to be positive, we require: \[ \theta \leq \min(x_1, \dots, x_n) = Y_1 \] where \(Y_1\) is the smallest order statistic.


Step 3: Maximize the Likelihood

The likelihood is: \[ L(\theta) = \theta^n \cdot \left(\prod_{i=1}^n x_i^{-2}\right) \] The term \(\prod x_i^{-2}\) does not depend on \(\theta\). So, to maximize \(L(\theta)\), we need to maximize \(\theta^n\) subject to \(\theta \leq Y_1\).

Since \(\theta^n\) is increasing in \(\theta\), the maximum occurs at the largest possible \(\theta\), which is: \[ \theta = Y_1 = \min(X_1, \dots, X_n) \]


Step 4: Final Answer

\[ \hat{\theta}_{\text{MLE}} = \min(X_1, \dots, X_n) \]


Question 6


Step 1: Joint Density of \((X, Y)\)

Since \(X\) and \(Y\) are independent: \[ f_{X,Y}(x,y) = \frac{1}{\Gamma(r)} x^{r-1} e^{-x} \cdot \frac{1}{\Gamma(s)} y^{s-1} e^{-y}, \quad x>0, y>0 \]


Step 2: Change of Variables

Let: \[ Z_1 = X + Y, \quad Z_2 = \frac{X}{X+Y} \] Then: \[ X = Z_1 Z_2, \quad Y = Z_1 (1 - Z_2) \] The Jacobian is: \[ J = \left| \begin{matrix} \frac{\partial x}{\partial z_1} & \frac{\partial x}{\partial z_2} \\ \frac{\partial y}{\partial z_1} & \frac{\partial y}{\partial z_2} \end{matrix} \right| = \left| \begin{matrix} z_2 & z_1 \\ 1-z_2 & -z_1 \end{matrix} \right| = -z_1 z_2 - z_1(1-z_2) = -z_1 \] So \(|J| = z_1\).


Step 3: Joint Density of \((Z_1, Z_2)\)

\[ f_{Z_1, Z_2}(z_1, z_2) = f_{X,Y}(x,y) \cdot |J| = \left[ \frac{1}{\Gamma(r)} (z_1 z_2)^{r-1} e^{-z_1 z_2} \right] \left[ \frac{1}{\Gamma(s)} (z_1(1-z_2))^{s-1} e^{-z_1(1-z_2)} \right] \cdot z_1 \] Simplify: \[ = \frac{1}{\Gamma(r)\Gamma(s)} z_1^{r-1} z_2^{r-1} z_1^{s-1} (1-z_2)^{s-1} e^{-z_1} \cdot z_1 \] \[ = \frac{1}{\Gamma(r)\Gamma(s)} z_1^{r+s-1} e^{-z_1} \cdot z_2^{r-1} (1-z_2)^{s-1} \]


Step 4: Factor the Joint Density

Notice: \[ f_{Z_1, Z_2}(z_1, z_2) = \underbrace{\frac{1}{\Gamma(r+s)} z_1^{r+s-1} e^{-z_1}}_{\text{Gamma}(r+s,1) \text{ density}} \cdot \underbrace{\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} z_2^{r-1} (1-z_2)^{s-1}}_{\text{Beta}(r,s) \text{ density}} \]

So: \[ f_{Z_1, Z_2}(z_1, z_2) = f_{Z_1}(z_1) \cdot f_{Z_2}(z_2) \] where: - \(Z_1 \sim \text{Gamma}(r+s, 1)\) - \(Z_2 \sim \text{Beta}(r, s)\)


Step 5: Independence and Distributions

Since the joint density factors, \(Z_1\) and \(Z_2\) are independent. Their distributions are: - \(Z_1 = X + Y \sim \text{Gamma}(r+s, 1)\) - \(Z_2 = \frac{X}{X+Y} \sim \text{Beta}(r, s)\)


LS0tDQp0aXRsZTogIlRoZW9yeSBvZiBTdGF0aXN0aWNzIC0gUkFTSU8gMjAyNSAtIGFuc3dlcnMiDQpkYXRlOiAiMTggU2VwdGVtYmVyIDIwMjUiDQphdXRob3I6ICJCdWRoaSBIYW5kb2tvIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQojIyMgKipRdWVzdGlvbiA0KioNCg0KIyMjIyAqKlN0ZXAgMTogV3JpdGUgdGhlIExpa2VsaWhvb2QgRnVuY3Rpb24qKg0KVGhlIHN1cHBvcnQgb2YgZWFjaCBcKFhfaVwpIGlzIFwoKFx0aGV0YSAtIDEvMiwgXHRoZXRhICsgMS8yKVwpLiBUaGUgam9pbnQgZGVuc2l0eSBpczoNClxbDQpMKFx0aGV0YSkgPSBccHJvZF97aT0xfV5uIGYoeF9pOyBcdGhldGEpID0gDQpcYmVnaW57Y2FzZXN9IA0KMSwgJiBcdGV4dHtpZiB9IFx0aGV0YSAtIFxmcmFjezF9ezJ9IDwgeF9pIDwgXHRoZXRhICsgXGZyYWN7MX17Mn0gXHRleHR7IGZvciBhbGwgfSBpIFxcDQowLCAmIFx0ZXh0e290aGVyd2lzZX0NClxlbmR7Y2FzZXN9DQpcXQ0KU28sIFwoTChcdGhldGEpID0gMVwpIGlmIGFuZCBvbmx5IGlmIGFsbCBcKHhfaVwpIGFyZSBpbiBcKChcdGhldGEgLSAxLzIsIFx0aGV0YSArIDEvMilcKS4NCg0KLS0tDQoNCiMjIyMgKipTdGVwIDI6IFJld3JpdGUgdGhlIENvbmRpdGlvbiBpbiBUZXJtcyBvZiBPcmRlciBTdGF0aXN0aWNzKioNClRoZSBjb25kaXRpb24gdGhhdCBhbGwgXCh4X2kgXGluIChcdGhldGEgLSAxLzIsIFx0aGV0YSArIDEvMilcKSBpcyBlcXVpdmFsZW50IHRvOg0KXFsNClx0aGV0YSAtIFxmcmFjezF9ezJ9IDwgWV8xIFxxdWFkIFx0ZXh0e2FuZH0gXHF1YWQgWV9uIDwgXHRoZXRhICsgXGZyYWN7MX17Mn0NClxdDQpSZWFycmFuZ2luZzoNClxbDQpZX24gLSBcZnJhY3sxfXsyfSA8IFx0aGV0YSA8IFlfMSArIFxmcmFjezF9ezJ9DQpcXQ0KDQotLS0NCg0KIyMjIyAqKlN0ZXAgMzogSW50ZXJwcmV0IHRoZSBMaWtlbGlob29kKioNClRoZSBsaWtlbGlob29kIGlzIDEgZm9yIGFsbCBcKFx0aGV0YVwpIGluIHRoZSBpbnRlcnZhbCBcKChZX24gLSAxLzIsIFlfMSArIDEvMilcKSwgYW5kIDAgb3RoZXJ3aXNlLiBUaGVyZWZvcmUsICoqZXZlcnkqKlwoXHRoZXRhXCkgaW4gdGhpcyBpbnRlcnZhbCBtYXhpbWl6ZXMgdGhlIGxpa2VsaWhvb2QgKHNpbmNlIHRoZSBsaWtlbGlob29kIGlzIGNvbnN0YW50IGFuZCBtYXhpbWFsIG9uIHRoaXMgaW50ZXJ2YWwpLiBIZW5jZSwgYW55IHZhbHVlIGluIHRoaXMgaW50ZXJ2YWwgaXMgYW4gTUxFLg0KDQpBIHN0YXRpc3RpYyBcKHUoWF8xLCBcZG90cywgWF9uKVwpIGlzIGFuIE1MRSBpZiBpdCBsaWVzIGluIHRoaXMgaW50ZXJ2YWwsIGkuZS4sDQpcWw0KWV9uIC0gXGZyYWN7MX17Mn0gXGxlcSB1IFxsZXEgWV8xICsgXGZyYWN7MX17Mn0NClxdDQoNCi0tLQ0KDQojIyMjICoqU3RlcCA0OiBFeGFtcGxlcyoqDQpHaXZlbiBleGFtcGxlczoNCi0gXChcZnJhY3s0WV8xICsgMllfbiArIDF9ezZ9XCkNCi0gXChcZnJhY3tZXzEgKyBZX259ezJ9XCkNCi0gXChcZnJhY3syWV8xICsgNFlfbiAtIDF9ezZ9XCkNCg0KV2UgY2FuIGNoZWNrIHRoYXQgZWFjaCBsaWVzIGJldHdlZW4gXChZX24gLSAxLzJcKSBhbmQgXChZXzEgKyAxLzJcKS4gRm9yIGluc3RhbmNlLCBcKFxmcmFje1lfMSArIFlfbn17Mn1cKSBpcyB0aGUgbWlkcG9pbnQgYW5kIGNsZWFybHkgaW4gdGhlIGludGVydmFsLg0KDQpUaGVyZWZvcmUsIHRoZXNlIGFyZSBhbGwgTUxFcywgYW5kIHRoZSBNTEUgaXMgbm90IHVuaXF1ZS4NCg0KLS0tDQoNCiMjIyAqKlF1ZXN0aW9uIDUqKg0KDQojIyMjICoqU3RlcCAxOiBXcml0ZSB0aGUgTGlrZWxpaG9vZCBGdW5jdGlvbioqDQpcWw0KTChcdGhldGEpID0gXHByb2Rfe2k9MX1ebiBmKHhfaSB8IFx0aGV0YSkgPSBccHJvZF97aT0xfV5uIFx0aGV0YSB4X2leey0yfSA9IFx0aGV0YV5uIFxwcm9kX3tpPTF9Xm4geF9pXnstMn0NClxdDQoNCi0tLQ0KDQojIyMjICoqU3RlcCAyOiBJbmNvcnBvcmF0ZSB0aGUgU3VwcG9ydCoqDQpUaGUgc3VwcG9ydCBpcyBcKFx0aGV0YSBcbGVxIHhfaSA8IFxpbmZ0eVwpIGZvciBhbGwgXChpXCkuIFNvLCBmb3IgdGhlIGxpa2VsaWhvb2QgdG8gYmUgcG9zaXRpdmUsIHdlIHJlcXVpcmU6DQpcWw0KXHRoZXRhIFxsZXEgXG1pbih4XzEsIFxkb3RzLCB4X24pID0gWV8xDQpcXQ0Kd2hlcmUgXChZXzFcKSBpcyB0aGUgc21hbGxlc3Qgb3JkZXIgc3RhdGlzdGljLg0KDQotLS0NCg0KIyMjIyAqKlN0ZXAgMzogTWF4aW1pemUgdGhlIExpa2VsaWhvb2QqKg0KVGhlIGxpa2VsaWhvb2QgaXM6DQpcWw0KTChcdGhldGEpID0gXHRoZXRhXm4gXGNkb3QgXGxlZnQoXHByb2Rfe2k9MX1ebiB4X2leey0yfVxyaWdodCkNClxdDQpUaGUgdGVybSBcKFxwcm9kIHhfaV57LTJ9XCkgZG9lcyBub3QgZGVwZW5kIG9uIFwoXHRoZXRhXCkuIFNvLCB0byBtYXhpbWl6ZSBcKEwoXHRoZXRhKVwpLCB3ZSBuZWVkIHRvIG1heGltaXplIFwoXHRoZXRhXm5cKSBzdWJqZWN0IHRvIFwoXHRoZXRhIFxsZXEgWV8xXCkuDQoNClNpbmNlIFwoXHRoZXRhXm5cKSBpcyBpbmNyZWFzaW5nIGluIFwoXHRoZXRhXCksIHRoZSBtYXhpbXVtIG9jY3VycyBhdCB0aGUgbGFyZ2VzdCBwb3NzaWJsZSBcKFx0aGV0YVwpLCB3aGljaCBpczoNClxbDQpcdGhldGEgPSBZXzEgPSBcbWluKFhfMSwgXGRvdHMsIFhfbikNClxdDQoNCi0tLQ0KDQojIyMjICoqU3RlcCA0OiBGaW5hbCBBbnN3ZXIqKg0KXFsNClxoYXR7XHRoZXRhfV97XHRleHR7TUxFfX0gPSBcbWluKFhfMSwgXGRvdHMsIFhfbikNClxdDQoNCi0tLQ0KDQojIyMgKipRdWVzdGlvbiA2KioNCg0KLS0tDQoNCiMjIyMgKipTdGVwIDE6IEpvaW50IERlbnNpdHkgb2YgXCgoWCwgWSlcKSoqDQpTaW5jZSBcKFhcKSBhbmQgXChZXCkgYXJlIGluZGVwZW5kZW50Og0KXFsNCmZfe1gsWX0oeCx5KSA9IFxmcmFjezF9e1xHYW1tYShyKX0geF57ci0xfSBlXnsteH0gXGNkb3QgXGZyYWN7MX17XEdhbW1hKHMpfSB5XntzLTF9IGVeey15fSwgXHF1YWQgeD4wLCB5PjANClxdDQoNCi0tLQ0KDQojIyMjICoqU3RlcCAyOiBDaGFuZ2Ugb2YgVmFyaWFibGVzKioNCkxldDoNClxbDQpaXzEgPSBYICsgWSwgXHF1YWQgWl8yID0gXGZyYWN7WH17WCtZfQ0KXF0NClRoZW46DQpcWw0KWCA9IFpfMSBaXzIsIFxxdWFkIFkgPSBaXzEgKDEgLSBaXzIpDQpcXQ0KVGhlIEphY29iaWFuIGlzOg0KXFsNCkogPSBcbGVmdHwgXGJlZ2lue21hdHJpeH0NClxmcmFje1xwYXJ0aWFsIHh9e1xwYXJ0aWFsIHpfMX0gJiBcZnJhY3tccGFydGlhbCB4fXtccGFydGlhbCB6XzJ9IFxcDQpcZnJhY3tccGFydGlhbCB5fXtccGFydGlhbCB6XzF9ICYgXGZyYWN7XHBhcnRpYWwgeX17XHBhcnRpYWwgel8yfQ0KXGVuZHttYXRyaXh9IFxyaWdodHwNCj0gXGxlZnR8IFxiZWdpbnttYXRyaXh9DQp6XzIgJiB6XzEgXFwNCjEtel8yICYgLXpfMQ0KXGVuZHttYXRyaXh9IFxyaWdodHwNCj0gLXpfMSB6XzIgLSB6XzEoMS16XzIpID0gLXpfMQ0KXF0NClNvIFwofEp8ID0gel8xXCkuDQoNCi0tLQ0KDQojIyMjICoqU3RlcCAzOiBKb2ludCBEZW5zaXR5IG9mIFwoKFpfMSwgWl8yKVwpKioNClxbDQpmX3taXzEsIFpfMn0oel8xLCB6XzIpID0gZl97WCxZfSh4LHkpIFxjZG90IHxKfCA9IFxsZWZ0WyBcZnJhY3sxfXtcR2FtbWEocil9ICh6XzEgel8yKV57ci0xfSBlXnstel8xIHpfMn0gXHJpZ2h0XSBcbGVmdFsgXGZyYWN7MX17XEdhbW1hKHMpfSAoel8xKDEtel8yKSlee3MtMX0gZV57LXpfMSgxLXpfMil9IFxyaWdodF0gXGNkb3Qgel8xDQpcXQ0KU2ltcGxpZnk6DQpcWw0KPSBcZnJhY3sxfXtcR2FtbWEocilcR2FtbWEocyl9IHpfMV57ci0xfSB6XzJee3ItMX0gel8xXntzLTF9ICgxLXpfMilee3MtMX0gZV57LXpfMX0gXGNkb3Qgel8xDQpcXQ0KXFsNCj0gXGZyYWN7MX17XEdhbW1hKHIpXEdhbW1hKHMpfSB6XzFee3Ircy0xfSBlXnstel8xfSBcY2RvdCB6XzJee3ItMX0gKDEtel8yKV57cy0xfQ0KXF0NCg0KLS0tDQoNCiMjIyMgKipTdGVwIDQ6IEZhY3RvciB0aGUgSm9pbnQgRGVuc2l0eSoqDQpOb3RpY2U6DQpcWw0KZl97Wl8xLCBaXzJ9KHpfMSwgel8yKSA9IFx1bmRlcmJyYWNle1xmcmFjezF9e1xHYW1tYShyK3MpfSB6XzFee3Ircy0xfSBlXnstel8xfX1fe1x0ZXh0e0dhbW1hfShyK3MsMSkgXHRleHR7IGRlbnNpdHl9fSBcY2RvdCBcdW5kZXJicmFjZXtcZnJhY3tcR2FtbWEocitzKX17XEdhbW1hKHIpXEdhbW1hKHMpfSB6XzJee3ItMX0gKDEtel8yKV57cy0xfX1fe1x0ZXh0e0JldGF9KHIscykgXHRleHR7IGRlbnNpdHl9fQ0KXF0NCg0KU286DQpcWw0KZl97Wl8xLCBaXzJ9KHpfMSwgel8yKSA9IGZfe1pfMX0oel8xKSBcY2RvdCBmX3taXzJ9KHpfMikNClxdDQp3aGVyZToNCi0gXChaXzEgXHNpbSBcdGV4dHtHYW1tYX0ocitzLCAxKVwpDQotIFwoWl8yIFxzaW0gXHRleHR7QmV0YX0ociwgcylcKQ0KDQotLS0NCg0KIyMjIyAqKlN0ZXAgNTogSW5kZXBlbmRlbmNlIGFuZCBEaXN0cmlidXRpb25zKioNClNpbmNlIHRoZSBqb2ludCBkZW5zaXR5IGZhY3RvcnMsIFwoWl8xXCkgYW5kIFwoWl8yXCkgYXJlIGluZGVwZW5kZW50LiBUaGVpciBkaXN0cmlidXRpb25zIGFyZToNCi0gXChaXzEgPSBYICsgWSBcc2ltIFx0ZXh0e0dhbW1hfShyK3MsIDEpXCkNCi0gXChaXzIgPSBcZnJhY3tYfXtYK1l9IFxzaW0gXHRleHR7QmV0YX0ociwgcylcKQ0KDQotLS0NCg0K