# Load packages
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ─────────────────────── tidyquant 1.0.11 ──
## ✔ PerformanceAnalytics 2.0.8      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.28     ✔ xts                  0.14.1── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary()            masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Get Stock Prices/ Convert to Returns

Ra <- c("TSLA", "AMZN", "HD", "NVDA", "LLY", "UAA") %>%
    tq_get(get  = "stock.prices",
           from = "2022-01-01") %>%
    group_by(symbol) %>%
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 col_rename = "Ra")
Ra
## # A tibble: 270 × 3
## # Groups:   symbol [6]
##    symbol date            Ra
##    <chr>  <date>       <dbl>
##  1 TSLA   2022-01-31 -0.219 
##  2 TSLA   2022-02-28 -0.0708
##  3 TSLA   2022-03-31  0.238 
##  4 TSLA   2022-04-29 -0.192 
##  5 TSLA   2022-05-31 -0.129 
##  6 TSLA   2022-06-30 -0.112 
##  7 TSLA   2022-07-29  0.324 
##  8 TSLA   2022-08-31 -0.0725
##  9 TSLA   2022-09-30 -0.0376
## 10 TSLA   2022-10-31 -0.142 
## # ℹ 260 more rows

Get Baseline/ Convert to Returns

Rb <- "^IXIC" %>%
    tq_get(get  = "stock.prices",
           from = "2022-01-01") %>%
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly", 
                 col_rename = "Rb")
Rb
## # A tibble: 45 × 2
##    date            Rb
##    <date>       <dbl>
##  1 2022-01-31 -0.101 
##  2 2022-02-28 -0.0343
##  3 2022-03-31  0.0341
##  4 2022-04-29 -0.133 
##  5 2022-05-31 -0.0205
##  6 2022-06-30 -0.0871
##  7 2022-07-29  0.123 
##  8 2022-08-31 -0.0464
##  9 2022-09-30 -0.105 
## 10 2022-10-31  0.0390
## # ℹ 35 more rows

Join the Two Tables

RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 270 × 4
## # Groups:   symbol [6]
##    symbol date            Ra      Rb
##    <chr>  <date>       <dbl>   <dbl>
##  1 TSLA   2022-01-31 -0.219  -0.101 
##  2 TSLA   2022-02-28 -0.0708 -0.0343
##  3 TSLA   2022-03-31  0.238   0.0341
##  4 TSLA   2022-04-29 -0.192  -0.133 
##  5 TSLA   2022-05-31 -0.129  -0.0205
##  6 TSLA   2022-06-30 -0.112  -0.0871
##  7 TSLA   2022-07-29  0.324   0.123 
##  8 TSLA   2022-08-31 -0.0725 -0.0464
##  9 TSLA   2022-09-30 -0.0376 -0.105 
## 10 TSLA   2022-10-31 -0.142   0.0390
## # ℹ 260 more rows

Calculate CAPM

RaRb_capm <- RaRb %>%
    tq_performance(Ra = Ra, 
                   Rb = Rb, 
                   performance_fun = table.CAPM)
## Registered S3 method overwritten by 'robustbase':
##   method          from     
##   hatvalues.lmrob RobStatTM
RaRb_capm
## # A tibble: 6 × 18
## # Groups:   symbol [6]
##   symbol ActivePremium   Alpha AlphaRobust AnnualizedAlpha  Beta `Beta-`
##   <chr>          <dbl>   <dbl>       <dbl>           <dbl> <dbl>   <dbl>
## 1 TSLA         -0.0819 -0.0008     -0.0008         -0.0101 1.95   1.88  
## 2 AMZN         -0.0078 -0.0013      0.0026         -0.015  1.37   1.50  
## 3 HD           -0.062  -0.0016     -0.0015         -0.0192 0.709  0.212 
## 4 NVDA          0.503   0.0313      0.0282          0.447  2.13   2.87  
## 5 LLY           0.234   0.0264      0.0264          0.367  0.154  0.0679
## 6 UAA          -0.421  -0.0351     -0.038          -0.348  1.32   0.332 
## # ℹ 11 more variables: `Beta-Robust` <dbl>, `Beta+` <dbl>, `Beta+Robust` <dbl>,
## #   BetaRobust <dbl>, Correlation <dbl>, `Correlationp-value` <dbl>,
## #   InformationRatio <dbl>, `R-squared` <dbl>, `R-squaredRobust` <dbl>,
## #   TrackingError <dbl>, TreynorRatio <dbl>

Which Stock has a positivity skewed distribution of returns

The skewed distribution of returns of the stocks

RaRb_skewness <- RaRb %>%
    mutate (skewness_Ra = skewness(Ra), 
            skewness_Rb = skewness(Rb))
RaRb_skewness
## # A tibble: 270 × 6
## # Groups:   symbol [6]
##    symbol date            Ra      Rb skewness_Ra skewness_Rb
##    <chr>  <date>       <dbl>   <dbl>       <dbl>       <dbl>
##  1 TSLA   2022-01-31 -0.219  -0.101        0.218      -0.383
##  2 TSLA   2022-02-28 -0.0708 -0.0343       0.218      -0.383
##  3 TSLA   2022-03-31  0.238   0.0341       0.218      -0.383
##  4 TSLA   2022-04-29 -0.192  -0.133        0.218      -0.383
##  5 TSLA   2022-05-31 -0.129  -0.0205       0.218      -0.383
##  6 TSLA   2022-06-30 -0.112  -0.0871       0.218      -0.383
##  7 TSLA   2022-07-29  0.324   0.123        0.218      -0.383
##  8 TSLA   2022-08-31 -0.0725 -0.0464       0.218      -0.383
##  9 TSLA   2022-09-30 -0.0376 -0.105        0.218      -0.383
## 10 TSLA   2022-10-31 -0.142   0.0390       0.218      -0.383
## # ℹ 260 more rows

Which sock(s) beat the market in 2022

So, based of the results that are showed above, in 2022, the following stocks beat the market: NVDA and LLY

BarPlot Visualization

# Create a bar plot of skewness
library(ggplot2)
ggplot(RaRb_skewness, aes(x = symbol, y = skewness_Ra, fill = symbol)) +
  geom_bar(stat = "identity", position = "dodge", show.legend = FALSE) +
  labs(x = "Stock", y = "Skewness", title = "Skewness of Returns") +
  theme_minimal()

Stocks with positive skewed distribution of returns

# Filter stocks with positive skewness and get distinct symbols
positive_skew_stocks <- RaRb_skewness %>%
  filter(skewness_Ra > 0) %>%
  distinct(symbol)

# Print the stocks with positive skewness
positive_skew_stocks
## # A tibble: 4 × 1
## # Groups:   symbol [4]
##   symbol
##   <chr> 
## 1 TSLA  
## 2 AMZN  
## 3 LLY   
## 4 UAA