suppressPackageStartupMessages({
  library(MASS)
  library(Matrix)
  library(dplyr)
  library(tidyr)
  library(ggplot2)
  library(forcats)
  library(scales)
  library(tibble)
})
## Warning: package 'forcats' was built under R version 4.4.3
set.seed(12345)

## ===== Global config =====
nsim       <- 10000
n_per_arm  <- 225
alpha_tot  <- 0.05
sided      <- "two"
pC         <- 0.50

endpts <- c("H1","H2","H3","H4","H5","H6")

## ===== Correlation =====
Sigma <- matrix(c(
  1.0, 0.1, 0.5, 0.1, 0.1, 0.1,
  0.1, 1.0, 0.1, 0.8, 0.5, 0.5,
  0.5, 0.1, 1.0, 0.1, 0.1, 0.1,
  0.1, 0.8, 0.1, 1.0, 0.5, 0.5,
  0.1, 0.5, 0.1, 0.5, 1.0, 0.5,
  0.1, 0.5, 0.1, 0.5, 0.5, 1.0
), 6, 6, byrow=TRUE, dimnames=list(endpts,endpts))
if (min(eigen(Sigma, symmetric=TRUE, only.values=TRUE)$values) < 1e-8) {
  Sigma <- as.matrix(nearPD(Sigma)$mat)
}
Sigma <- (Sigma + t(Sigma))/2

## ===== Graphs for D1, D5, D7 =====
# D1 (G13)
G13 <- rbind(
  H1 = c(0,0,1,0,0,0),
  H2 = c(0,0,1,0,0,0),
  H3 = c(0,0,0,1,0,0),
  H4 = c(0,0,0,0,1,0),
  H5 = c(0,0,0,0,0,1),
  H6 = c(0,0,0,0,0,0)
); colnames(G13) <- rownames(G13) <- endpts

# D5 (G5)
G5 <- rbind(
  H1 = c(0, 2/3, 1/3, 0, 0, 0),
  H2 = c(0, 0,   1,   0, 0, 0),
  H3 = c(0, 0,   0,   1, 0, 0),
  H4 = c(0, 0,   0,   0, 1, 0),
  H5 = c(0, 0,   0,   0, 0, 1),
  H6 = c(1, 0,   0,   0, 0, 0)
); colnames(G5) <- rownames(G5) <- endpts

# D7 (G7): like D5 but remove H6 from recycling; recycle when H5 rejects within H1–H5;
# H6 is tested at alpha=0.05 only if H1–H5 all reject (AND-gate).
G7 <- rbind(
  H1 = c(0, 2/3, 1/3, 0, 0, 0),
  H2 = c(0, 0,   1,   0, 0, 0),
  H3 = c(0, 0,   0,   1, 0, 0),
  H4 = c(0, 0,   0,   0, 1, 0),
  H5 = c(1, 0,   0,   0, 0, 0),  # recycle to H1; no flow to H6
  H6 = c(0, 0,   0,   0, 0, 0)
); colnames(G7) <- rownames(G7) <- endpts

## ===== Initial weights (D6 removed) =====
w_D1 <- c(H1=1/2, H2=1/2, H3=0, H4=0, H5=0, H6=0)
w_D5 <- c(H1=4/5, H2=1/5, H3=0, H4=0, H5=0, H6=0)
w_D7 <- c(H1=4/5, H2=1/5, H3=0, H4=0, H5=0, H6=0)

## ===== Colors (D1, D5, D7) =====
cols <- c("D1"="#1f77b4","D5"="#8c564b","D7"="#e377c2")

## ===== Helpers (dynamic 25/50/75/100 top, ticks every 5%) =====
axis_cap_25_50_75 <- function(mx) {
  if (is.na(mx) || mx <= 0) return(0.25)
  if (mx <= 0.25) return(0.25)
  if (mx <= 0.50) return(0.50)
  if (mx <= 0.75) return(0.75)
  1.00
}
axis_breaks_5pct <- function(top) seq(0, top, by = 0.05)

## ===== Alpha flow helpers =====
has_path_to_nonrejected <- function(start, rejected, G) {
  q <- which(names(rejected)==start)
  visited <- setNames(rep(FALSE, length(rejected)), names(rejected))
  while (length(q)) {
    i <- q[1]; q <- q[-1]
    if (visited[i]) next
    visited[i] <- TRUE
    nbrs <- names(which(G[i,] > 0))
    for (jname in nbrs) {
      j <- which(names(rejected)==jname)
      if (!rejected[j]) return(TRUE)
      if (!visited[j]) q <- c(q, j)
    }
  }
  FALSE
}
push_alpha_through_rejected <- function(a, rejected, G) {
  repeat {
    moved <- FALSE
    for (i in seq_along(a)) {
      if (rejected[i] && a[i] > 0) {
        if (has_path_to_nonrejected(names(a)[i], rejected, G)) {
          ai <- a[i]; a <- a + ai * G[i, ]; a[i] <- 0; moved <- TRUE
        } else { a[i] <- 0; moved <- TRUE }
      }
    }
    if (!moved) break
  }
  a
}

run_graph <- function(p, w, G, alpha_tot=0.05) {
  stopifnot(abs(sum(w)-1) < 1e-12, identical(names(w), colnames(G)))
  a <- alpha_tot * w
  tested   <- setNames(rep(FALSE, 6), names(w))
  rejected <- setNames(rep(FALSE, 6), names(w))
  tested[a > 0] <- TRUE
  repeat {
    can_reject <- (!rejected) & (p <= a)
    if (!any(can_reject)) break
    rej_nodes <- names(which(can_reject))
    for (i in rej_nodes) {
      ai <- a[i]
      if (ai > 0) { a <- a + ai * G[i, ]; a[i] <- 0 }
      rejected[i] <- TRUE
    }
    a <- push_alpha_through_rejected(a, rejected, G)
    tested[a > 0] <- TRUE
  }
  list(tested=tested, rejected=rejected)
}

## AND-gate for H6 only (used by D7)
run_andgate_H6 <- function(p, w, G, alpha_tot=0.05) {
  a <- alpha_tot * w
  tested   <- setNames(rep(FALSE, 6), names(w))
  rejected <- setNames(rep(FALSE, 6), names(w))
  tested[a > 0] <- TRUE
  repeat {
    can_reject <- (!rejected[1:5]) & (p[1:5] <= a[1:5])
    if (!any(can_reject)) break
    rej_nodes <- names(which(can_reject))
    for (i in rej_nodes) {
      ai <- a[i]
      if (ai > 0) { a <- a + ai * G[i, ]; a[i] <- 0 }
      rejected[i] <- TRUE
    }
    a <- push_alpha_through_rejected(a, rejected, G)
    tested[a > 0] <- TRUE
  }
  if (all(rejected[1:5])) {
    tested["H6"]  <- TRUE
    rejected["H6"] <- (p["H6"] <= 0.05)
  }
  list(tested=tested, rejected=rejected)
}

## ===== Data generation & p-values =====
gen_arm <- function(trt, n, Sigma, Delta, SD, pC) {
  Z <- mvrnorm(n, mu=rep(0,6), Sigma=Sigma); colnames(Z) <- endpts
  means <- setNames(rep(0,6), endpts)
  if (trt==1) means[c("H1","H2","H4","H5","H6")] <- Delta[c("H1","H2","H4","H5","H6")]
  dat <- data.frame(
    kccq   = means["H1"] + SD["H1"] * Z[,"H1"],
    pvo2   = means["H2"] + SD["H2"] * Z[,"H2"],
    zscore = means["H4"] + SD["H4"] * Z[,"H4"],
    ntprob = means["H5"] + SD["H5"] * Z[,"H5"],
    lavi   = means["H6"] + SD["H6"] * Z[,"H6"],
    trt    = trt
  )
  p <- if (trt==1) pmin(pmax(pC + Delta["H3"], 1e-8), 1-1e-8) else pC
  dat$imp <- as.integer(Z[,"H3"] <= qnorm(p))
  dat
}
p_two_or_one <- function(tstat, sided=c("two","one"), delta_sign=1) {
  sided <- match.arg(sided)
  if (sided=="two") 2*pnorm(-abs(tstat)) else pnorm(-delta_sign*tstat)
}
pvals_from_data <- function(dt, Delta) {
  pv <- setNames(rep(NA_real_,6), endpts)
  pv["H1"] <- p_two_or_one(t.test(kccq ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H1"]))
  pv["H2"] <- p_two_or_one(t.test(pvo2 ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H2"]))
  pv["H3"] <- suppressWarnings(chisq.test(table(dt$trt, dt$imp), correct=FALSE)$p.value)
  pv["H4"] <- p_two_or_one(t.test(zscore ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H4"]))
  pv["H5"] <- p_two_or_one(t.test(ntprob ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H5"]))
  pv["H6"] <- p_two_or_one(t.test(lavi   ~ trt, data=dt, var.equal=FALSE)$statistic, sided=sided, delta_sign=sign(Delta["H6"]))
  pv
}

## ===== Scenarios (Scenario 1 included) =====
H5_fix <- list(diff=-1.0, sd=1.0)
H6_fix <- list(diff=-3.5, sd=10.0)

scenarios <- list(
  "Scenario 1"  = list(H1=list(diff=5.00, sd=15), H2=list(diff=1.00, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 2"  = list(H1=list(diff=5.00, sd=15), H2=list(diff=0.75, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 3"  = list(H1=list(diff=5.00, sd=15), H2=list(diff=0.54, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 4"  = list(H1=list(diff=5.00, sd=15), H2=list(diff=0.30, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),

  "Scenario 5"  = list(H1=list(diff=3.75, sd=15), H2=list(diff=1.00, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 6"  = list(H1=list(diff=3.75, sd=15), H2=list(diff=0.75, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 7"  = list(H1=list(diff=3.75, sd=15), H2=list(diff=0.54, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 8"  = list(H1=list(diff=3.75, sd=15), H2=list(diff=0.30, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),

  "Scenario 9"  = list(H1=list(diff=2.70, sd=15), H2=list(diff=1.00, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 10" = list(H1=list(diff=2.70, sd=15), H2=list(diff=0.75, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 11" = list(H1=list(diff=2.70, sd=15), H2=list(diff=0.54, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 12" = list(H1=list(diff=2.70, sd=15), H2=list(diff=0.30, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),

  "Scenario 13" = list(H1=list(diff=1.50, sd=15), H2=list(diff=1.00, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 14" = list(H1=list(diff=1.50, sd=15), H2=list(diff=0.75, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 15" = list(H1=list(diff=1.50, sd=15), H2=list(diff=0.54, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix),
  "Scenario 16" = list(H1=list(diff=1.50, sd=15), H2=list(diff=0.30, sd=3), H3=0.15, H4=list(diff=0.2, sd=1), H5=H5_fix, H6=H6_fix)
)
stopifnot(length(scenarios) >= 1)

## ===== Title helper: show ONLY diffs for H1–H4 =====
mk_title <- function(name, sc) {
  paste0(
    name, " — H1=", sc$H1$diff, "; ",
    "H2=", sc$H2$diff, "; ",
    "H3=", sc$H3, "; ",
    "H4=", sc$H4$diff
  )
}

## ===== Simulation per scenario (D6 removed; include D7; add H1_or_H2) =====
simulate_designs_for_scenario <- function(sc) {
  Delta <- c(H1=sc$H1$diff, H2=sc$H2$diff, H3=sc$H3, H4=sc$H4$diff, H5=sc$H5$diff, H6=sc$H6$diff)
  SD    <- c(H1=sc$H1$sd,   H2=sc$H2$sd,                 H4=sc$H4$sd,   H5=sc$H5$sd,   H6=sc$H6$sd)

  p_list <- vector("list", nsim)
  for (b in seq_len(nsim)) {
    trt <- gen_arm(1, n_per_arm, Sigma, Delta, SD, pC)
    ctl <- gen_arm(0, n_per_arm, Sigma, Delta, SD, pC)
    dt  <- rbind(trt, ctl)
    p_list[[b]] <- pvals_from_data(dt, Delta)
  }

  simulate_with_p <- function(label, w_init, Gmat, mode=c("generic","andgate")) {
    mode <- match.arg(mode)
    tested_acc <- matrix(0L, nsim, 6, dimnames=list(NULL,endpts))
    reject_acc <- matrix(0L, nsim, 6, dimnames=list(NULL,endpts))
    h1_rej <- logical(nsim); h2_rej <- logical(nsim)

    for (b in seq_len(nsim)) {
      p <- p_list[[b]]
      out <- if (mode=="andgate") run_andgate_H6(p, w_init, Gmat, alpha_tot)
             else                  run_graph      (p, w_init, Gmat, alpha_tot)
      tested_acc[b, ] <- as.integer(out$tested)
      reject_acc[b, ] <- as.integer(out$rejected)
      h1_rej[b] <- out$rejected["H1"]
      h2_rej[b] <- out$rejected["H2"]
    }

    res_endpt <- tibble(endpoint=endpts,
                        prob_tested=colMeans(tested_acc),
                        power=colMeans(reject_acc),
                        design=label)

    res_comb  <- tibble(endpoint="H1_or_H2",
                        prob_tested=NA_real_,
                        power=mean(h1_rej | h2_rej),
                        design=label)

    bind_rows(res_endpt, res_comb)
  }

  bind_rows(
    simulate_with_p("D1", w_D1, G13, "generic"),
    simulate_with_p("D5", w_D5, G5,  "generic"),
    simulate_with_p("D7", w_D7, G7,  "andgate")  # H6 only after H1–H5 all reject
  )
}

## ===== Run all scenarios and plot (no saving; titles show only diffs) =====
for (sc_name in names(scenarios)) {
  sc  <- scenarios[[sc_name]]
  res <- simulate_designs_for_scenario(sc)

  ## Probability of being tested: ONLY H3–H6
  res_prob <- res %>%
    filter(endpoint %in% paste0("H",3:6)) %>%
    mutate(endpoint=factor(endpoint, levels=paste0("H",3:6)))

  top_prob <- axis_cap_25_50_75(max(res_prob$prob_tested, na.rm = TRUE))

  p_prob <- ggplot(res_prob, aes(endpoint, prob_tested, fill=design)) +
    geom_col(position=position_dodge(width=0.82), width=0.72) +
    labs(
      title = mk_title(sc_name, sc),
      subtitle = "Probability of being tested (H3–H6)",
      x="Endpoint", y="Probability tested"
    ) +
    scale_y_continuous(limits = c(0, top_prob),
                       breaks = axis_breaks_5pct(top_prob),
                       labels = percent_format(accuracy=1),
                       expand = expansion(mult=c(0,0))) +
    theme_minimal(base_size=12) +
    scale_fill_manual(values=cols) +
    theme(plot.title = element_text(face="bold", size=14))
  print(p_prob)

  ## Power: include H1_or_H2 + H1–H6
  res_power <- res %>%
    mutate(endpoint=factor(endpoint, levels=c("H1_or_H2", paste0("H",1:6))))

  top_power <- axis_cap_25_50_75(max(res_power$power, na.rm = TRUE))

  p_pow <- ggplot(res_power, aes(endpoint, power, fill=design)) +
    geom_col(position=position_dodge(width=0.82), width=0.72) +
    labs(
      title = mk_title(sc_name, sc),
      x="Endpoint", y="Power"
    ) +
    scale_y_continuous(limits = c(0, top_power),
                       breaks = axis_breaks_5pct(top_power),
                       labels = percent_format(accuracy=1),
                       expand = expansion(mult=c(0,0))) +
    theme_minimal(base_size=12) +
    scale_fill_manual(values=cols) +
    theme(plot.title = element_text(face="bold", size=14))
  print(p_pow)

  cat("\n===== ", sc_name, " — Table =====\n", sep = "")
  print(res %>% arrange(match(endpoint, c("H1_or_H2", paste0("H",1:6))), design), n = Inf)
}

## 
## ===== Scenario 1 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.988 D1    
##  2 H1_or_H2      NA     0.985 D5    
##  3 H1_or_H2      NA     0.985 D7    
##  4 H1             1     0.901 D1    
##  5 H1             1     0.933 D5    
##  6 H1             1     0.934 D7    
##  7 H2             1     0.904 D1    
##  8 H2             1     0.920 D5    
##  9 H2             1     0.920 D7    
## 10 H3             0.988 0.879 D1    
## 11 H3             0.985 0.872 D5    
## 12 H3             0.985 0.872 D7    
## 13 H4             0.879 0.487 D1    
## 14 H4             0.872 0.483 D5    
## 15 H4             0.872 0.483 D7    
## 16 H5             0.487 0.487 D1    
## 17 H5             0.483 0.483 D5    
## 18 H5             0.483 0.483 D7    
## 19 H6             0.487 0.453 D1    
## 20 H6             0.483 0.448 D5    
## 21 H6             0.468 0.438 D7

## 
## ===== Scenario 2 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.963 D1    
##  2 H1_or_H2      NA     0.964 D5    
##  3 H1_or_H2      NA     0.964 D7    
##  4 H1             1     0.905 D1    
##  5 H1             1     0.936 D5    
##  6 H1             1     0.936 D7    
##  7 H2             1     0.664 D1    
##  8 H2             1     0.704 D5    
##  9 H2             1     0.704 D7    
## 10 H3             0.963 0.842 D1    
## 11 H3             0.964 0.829 D5    
## 12 H3             0.964 0.829 D7    
## 13 H4             0.842 0.466 D1    
## 14 H4             0.829 0.461 D5    
## 15 H4             0.829 0.461 D7    
## 16 H5             0.466 0.466 D1    
## 17 H5             0.461 0.461 D5    
## 18 H5             0.461 0.461 D7    
## 19 H6             0.466 0.432 D1    
## 20 H6             0.461 0.426 D5    
## 21 H6             0.445 0.414 D7

## 
## ===== Scenario 3 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.930 D1    
##  2 H1_or_H2      NA     0.940 D5    
##  3 H1_or_H2      NA     0.940 D7    
##  4 H1             1     0.903 D1    
##  5 H1             1     0.929 D5    
##  6 H1             1     0.930 D7    
##  7 H2             1     0.370 D1    
##  8 H2             1     0.428 D5    
##  9 H2             1     0.429 D7    
## 10 H3             0.930 0.799 D1    
## 11 H3             0.940 0.778 D5    
## 12 H3             0.940 0.778 D7    
## 13 H4             0.799 0.407 D1    
## 14 H4             0.778 0.378 D5    
## 15 H4             0.778 0.378 D7    
## 16 H5             0.407 0.407 D1    
## 17 H5             0.378 0.378 D5    
## 18 H5             0.378 0.378 D7    
## 19 H6             0.407 0.370 D1    
## 20 H6             0.378 0.342 D5    
## 21 H6             0.334 0.304 D7

## 
## ===== Scenario 4 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.911 D1    
##  2 H1_or_H2      NA     0.935 D5    
##  3 H1_or_H2      NA     0.935 D7    
##  4 H1             1     0.903 D1    
##  5 H1             1     0.932 D5    
##  6 H1             1     0.933 D7    
##  7 H2             1     0.120 D1    
##  8 H2             1     0.164 D5    
##  9 H2             1     0.168 D7    
## 10 H3             0.911 0.763 D1    
## 11 H3             0.935 0.738 D5    
## 12 H3             0.935 0.738 D7    
## 13 H4             0.763 0.355 D1    
## 14 H4             0.738 0.285 D5    
## 15 H4             0.738 0.285 D7    
## 16 H5             0.355 0.355 D1    
## 17 H5             0.285 0.285 D5    
## 18 H5             0.285 0.285 D7    
## 19 H6             0.355 0.316 D1    
## 20 H6             0.285 0.244 D5    
## 21 H6             0.143 0.125 D7

## 
## ===== Scenario 5 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.961 D1    
##  2 H1_or_H2      NA     0.945 D5    
##  3 H1_or_H2      NA     0.945 D7    
##  4 H1             1     0.665 D1    
##  5 H1             1     0.733 D5    
##  6 H1             1     0.735 D7    
##  7 H2             1     0.900 D1    
##  8 H2             1     0.894 D5    
##  9 H2             1     0.894 D7    
## 10 H3             0.961 0.855 D1    
## 11 H3             0.945 0.827 D5    
## 12 H3             0.945 0.827 D7    
## 13 H4             0.855 0.471 D1    
## 14 H4             0.827 0.442 D5    
## 15 H4             0.827 0.442 D7    
## 16 H5             0.471 0.471 D1    
## 17 H5             0.442 0.442 D5    
## 18 H5             0.442 0.442 D7    
## 19 H6             0.471 0.432 D1    
## 20 H6             0.442 0.402 D5    
## 21 H6             0.38  0.352 D7

## 
## ===== Scenario 6 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.866 D1    
##  2 H1_or_H2      NA     0.849 D5    
##  3 H1_or_H2      NA     0.849 D7    
##  4 H1             1     0.660 D1    
##  5 H1             1     0.728 D5    
##  6 H1             1     0.730 D7    
##  7 H2             1     0.661 D1    
##  8 H2             1     0.659 D5    
##  9 H2             1     0.659 D7    
## 10 H3             0.866 0.751 D1    
## 11 H3             0.849 0.718 D5    
## 12 H3             0.849 0.718 D7    
## 13 H4             0.751 0.435 D1    
## 14 H4             0.718 0.406 D5    
## 15 H4             0.718 0.406 D7    
## 16 H5             0.435 0.435 D1    
## 17 H5             0.406 0.406 D5    
## 18 H5             0.406 0.406 D7    
## 19 H6             0.435 0.399 D1    
## 20 H6             0.406 0.368 D5    
## 21 H6             0.352 0.327 D7

## 
## ===== Scenario 7 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.776 D1    
##  2 H1_or_H2      NA     0.786 D5    
##  3 H1_or_H2      NA     0.786 D7    
##  4 H1             1     0.662 D1    
##  5 H1             1     0.729 D5    
##  6 H1             1     0.73  D7    
##  7 H2             1     0.373 D1    
##  8 H2             1     0.390 D5    
##  9 H2             1     0.391 D7    
## 10 H3             0.776 0.656 D1    
## 11 H3             0.786 0.635 D5    
## 12 H3             0.786 0.635 D7    
## 13 H4             0.656 0.364 D1    
## 14 H4             0.635 0.328 D5    
## 15 H4             0.635 0.328 D7    
## 16 H5             0.364 0.364 D1    
## 17 H5             0.328 0.328 D5    
## 18 H5             0.328 0.328 D7    
## 19 H6             0.364 0.328 D1    
## 20 H6             0.328 0.291 D5    
## 21 H6             0.263 0.240 D7

## 
## ===== Scenario 8 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested  power design
##    <chr>          <dbl>  <dbl> <chr> 
##  1 H1_or_H2      NA     0.687  D1    
##  2 H1_or_H2      NA     0.733  D5    
##  3 H1_or_H2      NA     0.733  D7    
##  4 H1             1     0.653  D1    
##  5 H1             1     0.721  D5    
##  6 H1             1     0.722  D7    
##  7 H2             1     0.120  D1    
##  8 H2             1     0.141  D5    
##  9 H2             1     0.144  D7    
## 10 H3             0.687 0.558  D1    
## 11 H3             0.733 0.556  D5    
## 12 H3             0.733 0.556  D7    
## 13 H4             0.558 0.280  D1    
## 14 H4             0.556 0.234  D5    
## 15 H4             0.556 0.234  D7    
## 16 H5             0.280 0.280  D1    
## 17 H5             0.234 0.234  D5    
## 18 H5             0.234 0.234  D7    
## 19 H6             0.280 0.247  D1    
## 20 H6             0.234 0.197  D5    
## 21 H6             0.112 0.0973 D7

## 
## ===== Scenario 9 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.932 D1    
##  2 H1_or_H2      NA     0.895 D5    
##  3 H1_or_H2      NA     0.895 D7    
##  4 H1             1     0.372 D1    
##  5 H1             1     0.450 D5    
##  6 H1             1     0.452 D7    
##  7 H2             1     0.902 D1    
##  8 H2             1     0.866 D5    
##  9 H2             1     0.866 D7    
## 10 H3             0.932 0.806 D1    
## 11 H3             0.895 0.742 D5    
## 12 H3             0.895 0.742 D7    
## 13 H4             0.806 0.413 D1    
## 14 H4             0.742 0.349 D5    
## 15 H4             0.742 0.349 D7    
## 16 H5             0.413 0.413 D1    
## 17 H5             0.349 0.349 D5    
## 18 H5             0.349 0.349 D7    
## 19 H6             0.413 0.370 D1    
## 20 H6             0.349 0.302 D5    
## 21 H6             0.226 0.208 D7

## 
## ===== Scenario 10 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.772 D1    
##  2 H1_or_H2      NA     0.718 D5    
##  3 H1_or_H2      NA     0.718 D7    
##  4 H1             1     0.372 D1    
##  5 H1             1     0.447 D5    
##  6 H1             1     0.449 D7    
##  7 H2             1     0.654 D1    
##  8 H2             1     0.604 D5    
##  9 H2             1     0.604 D7    
## 10 H3             0.772 0.654 D1    
## 11 H3             0.718 0.577 D5    
## 12 H3             0.718 0.577 D7    
## 13 H4             0.654 0.392 D1    
## 14 H4             0.577 0.325 D5    
## 15 H4             0.577 0.325 D7    
## 16 H5             0.392 0.392 D1    
## 17 H5             0.325 0.325 D5    
## 18 H5             0.325 0.325 D7    
## 19 H6             0.392 0.350 D1    
## 20 H6             0.325 0.280 D5    
## 21 H6             0.209 0.194 D7

## 
## ===== Scenario 11 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2      NA     0.587 D1    
##  2 H1_or_H2      NA     0.575 D5    
##  3 H1_or_H2      NA     0.575 D7    
##  4 H1             1     0.369 D1    
##  5 H1             1     0.446 D5    
##  6 H1             1     0.448 D7    
##  7 H2             1     0.363 D1    
##  8 H2             1     0.338 D5    
##  9 H2             1     0.339 D7    
## 10 H3             0.587 0.477 D1    
## 11 H3             0.575 0.440 D5    
## 12 H3             0.575 0.440 D7    
## 13 H4             0.477 0.307 D1    
## 14 H4             0.440 0.253 D5    
## 15 H4             0.440 0.253 D7    
## 16 H5             0.307 0.307 D1    
## 17 H5             0.253 0.253 D5    
## 18 H5             0.253 0.253 D7    
## 19 H6             0.307 0.270 D1    
## 20 H6             0.253 0.212 D5    
## 21 H6             0.160 0.147 D7

## 
## ===== Scenario 12 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested  power design
##    <chr>          <dbl>  <dbl> <chr> 
##  1 H1_or_H2     NA      0.442  D1    
##  2 H1_or_H2     NA      0.486  D5    
##  3 H1_or_H2     NA      0.486  D7    
##  4 H1            1      0.376  D1    
##  5 H1            1      0.453  D5    
##  6 H1            1      0.453  D7    
##  7 H2            1      0.122  D1    
##  8 H2            1      0.118  D5    
##  9 H2            1      0.120  D7    
## 10 H3            0.442  0.338  D1    
## 11 H3            0.486  0.342  D5    
## 12 H3            0.486  0.342  D7    
## 13 H4            0.338  0.195  D1    
## 14 H4            0.342  0.159  D5    
## 15 H4            0.342  0.159  D7    
## 16 H5            0.195  0.195  D1    
## 17 H5            0.159  0.159  D5    
## 18 H5            0.159  0.159  D7    
## 19 H6            0.195  0.165  D1    
## 20 H6            0.159  0.125  D5    
## 21 H6            0.0723 0.0614 D7

## 
## ===== Scenario 13 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested  power design
##    <chr>          <dbl>  <dbl> <chr> 
##  1 H1_or_H2     NA      0.911  D1    
##  2 H1_or_H2     NA      0.851  D5    
##  3 H1_or_H2     NA      0.851  D7    
##  4 H1            1      0.117  D1    
##  5 H1            1      0.162  D5    
##  6 H1            1      0.163  D7    
##  7 H2            1      0.903  D1    
##  8 H2            1      0.843  D5    
##  9 H2            1      0.843  D7    
## 10 H3            0.911  0.774  D1    
## 11 H3            0.851  0.663  D5    
## 12 H3            0.851  0.663  D7    
## 13 H4            0.774  0.392  D1    
## 14 H4            0.663  0.278  D5    
## 15 H4            0.663  0.278  D7    
## 16 H5            0.392  0.392  D1    
## 17 H5            0.278  0.278  D5    
## 18 H5            0.278  0.278  D7    
## 19 H6            0.392  0.346  D1    
## 20 H6            0.278  0.223  D5    
## 21 H6            0.0791 0.0736 D7

## 
## ===== Scenario 14 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested power design
##    <chr>          <dbl> <dbl> <chr> 
##  1 H1_or_H2     NA      0.695 D1    
##  2 H1_or_H2     NA      0.598 D5    
##  3 H1_or_H2     NA      0.598 D7    
##  4 H1            1      0.123 D1    
##  5 H1            1      0.170 D5    
##  6 H1            1      0.171 D7    
##  7 H2            1      0.662 D1    
##  8 H2            1      0.561 D5    
##  9 H2            1      0.561 D7    
## 10 H3            0.695  0.578 D1    
## 11 H3            0.598  0.451 D5    
## 12 H3            0.598  0.451 D7    
## 13 H4            0.578  0.363 D1    
## 14 H4            0.451  0.258 D5    
## 15 H4            0.451  0.258 D7    
## 16 H5            0.363  0.363 D1    
## 17 H5            0.258  0.258 D5    
## 18 H5            0.258  0.258 D7    
## 19 H6            0.363  0.32  D1    
## 20 H6            0.258  0.206 D5    
## 21 H6            0.0797 0.073 D7

## 
## ===== Scenario 15 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested  power design
##    <chr>          <dbl>  <dbl> <chr> 
##  1 H1_or_H2     NA      0.436  D1    
##  2 H1_or_H2     NA      0.363  D5    
##  3 H1_or_H2     NA      0.363  D7    
##  4 H1            1      0.119  D1    
##  5 H1            1      0.161  D5    
##  6 H1            1      0.162  D7    
##  7 H2            1      0.366  D1    
##  8 H2            1      0.283  D5    
##  9 H2            1      0.283  D7    
## 10 H3            0.436  0.350  D1    
## 11 H3            0.363  0.262  D5    
## 12 H3            0.363  0.262  D7    
## 13 H4            0.350  0.270  D1    
## 14 H4            0.262  0.184  D5    
## 15 H4            0.262  0.184  D7    
## 16 H5            0.270  0.270  D1    
## 17 H5            0.184  0.184  D5    
## 18 H5            0.184  0.184  D7    
## 19 H6            0.270  0.232  D1    
## 20 H6            0.184  0.141  D5    
## 21 H6            0.0591 0.0544 D7

## 
## ===== Scenario 16 — Table =====
## # A tibble: 21 × 4
##    endpoint prob_tested  power design
##    <chr>          <dbl>  <dbl> <chr> 
##  1 H1_or_H2     NA      0.216  D1    
##  2 H1_or_H2     NA      0.208  D5    
##  3 H1_or_H2     NA      0.208  D7    
##  4 H1            1      0.114  D1    
##  5 H1            1      0.158  D5    
##  6 H1            1      0.158  D7    
##  7 H2            1      0.120  D1    
##  8 H2            1      0.0823 D5    
##  9 H2            1      0.0825 D7    
## 10 H3            0.216  0.156  D1    
## 11 H3            0.208  0.132  D5    
## 12 H3            0.208  0.132  D7    
## 13 H4            0.156  0.118  D1    
## 14 H4            0.132  0.0787 D5    
## 15 H4            0.132  0.0787 D7    
## 16 H5            0.118  0.118  D1    
## 17 H5            0.0787 0.0787 D5    
## 18 H5            0.0787 0.0787 D7    
## 19 H6            0.118  0.0956 D1    
## 20 H6            0.0787 0.0564 D5    
## 21 H6            0.0241 0.0207 D7