##chargement des packages----
library(questionr)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tableone)
library(labelled)
library(gtsummary)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(readxl)
library(effects)
## Le chargement a nécessité le package : carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(survival)
library(survminer)
## Le chargement a nécessité le package : ggpubr
## 
## Attachement du package : 'survminer'
## 
## L'objet suivant est masqué depuis 'package:survival':
## 
##     myeloma
library(ggplot2)
library(dplyr)
library(knitr)
library(cowplot)
## 
## Attachement du package : 'cowplot'
## 
## L'objet suivant est masqué depuis 'package:ggpubr':
## 
##     get_legend
## 
## L'objet suivant est masqué depuis 'package:lubridate':
## 
##     stamp
##chargement des données 

data_leila <- read_excel("~/FAC/2024-2025/theses/leila/data_leila.xlsx")
## New names:
## • `tgp` -> `tgp...56`
## • `tgp` -> `tgp...57`
data_beam<-filter(data_leila, c(patientcohorte==1))


##recodage des variables et bases de données le cas échéant----
data_beam$surpoids<-ifelse(data_beam$imc>25, 1, 0)
data_beam$old65<-ifelse(data_beam$age>65, 1, 0)
data_beam$ligne_cat2<-ifelse(data_beam$nombre_de_ligne_antérieur>1, 1, 0)
data_beam$ligne_cat3<-ifelse(data_beam$nombre_de_ligne_antérieur>2, 1, 0)
data_beam$ligne_cat4<-ifelse(data_beam$nombre_de_ligne_antérieur>3, 1, 0)
data_beam$sexe.cat<-ifelse(data_beam$sexe=="F", 1, 0)
data_beam$sc.max<-ifelse(data_beam$sc_utilisee_si_capee==2, 1, 0)
data_beam$alteration_foie<-ifelse(data_beam$foie_sans_anomalie==1, 0, 1)
data_beam$alteration_rein<-ifelse(data_beam$rein_sans_anomalie==1, 0, 1)

##renommer des variables pour présentation dans les tableaux de résultats
library(labelled)
var_label(data_beam$old65) <- "Patients de + de 65 ans"
var_label(data_beam$surpoids) <- "Patients avec IMC >25"
var_label(data_beam$obesite) <- "Patients avec IMC >30"
var_label(data_beam$poids_chimio_avant_conditionnement) <- "Poids"
var_label(data_beam$surface_corporelle) <- "Surface corporelle calculée"
var_label(data_beam$sc_utilisee_si_capee) <- "Surface corporelle utilisée pour calcul des doses"
var_label(data_beam$oms.cat) <- "Score OMS 0 vs 1 et +"
var_label(data_beam$pathologie) <- "Type d'hémopathie"
var_label(data_beam$nombre_de_ligne_antérieur) <- "Nombre de lignes antérieures"
var_label(data_beam$ligne_cat2) <- "1 ligne anterieure et +"
var_label(data_beam$ligne_cat3) <- "2 lignes anterieures et +"
var_label(data_beam$ligne_cat4) <- "3 lignes anterieures et +"
var_label(data_beam$reponse_maladie_avant_beam) <- "Statut réponse avant autogreffe"
var_label(data_beam$conditionnement_utilise) <- "Protocole intensification"
var_label(data_beam$hb) <- "Hb avant BEAM (g/dl)"
var_label(data_beam$plaquettes) <- "Taux de plaquettes avant BEAM (G/l)"
var_label(data_beam$leucocyte) <- "GB avant BEAM (g/dl)"
var_label(data_beam$pnn) <- "PNN avant BEAM (G/l)"
var_label(data_beam$foie_sans_anomalie) <- "Bilan hépatique sans anomalie"
var_label(data_beam$rein_sans_anomalie) <- "Bilan rénal sans anomalie"
var_label(data_beam$transfusion_cg) <- "Patients avec trasnfusion CG"
var_label(data_beam$transfusion_cp) <- "Patients avec trasnfusion CP"
var_label(data_beam$gcsf) <- "Patients avec G_CSF"
var_label(data_beam$duree_leucopenie_grade3) <- "Durée de Leucopénie Grade_3 postBEAM"
var_label(data_beam$duree_leucopenie_grade4) <- "Durée de Leucopénie Grade_4 postBEAM"

##création de variables à plusieurs catégorie selon valeurs variable continue

#na


##tableau descriptif patients selon obesite ----
tbl_summary(
  data_beam, include = c("age", 
                         "old65",
                          "sexe", 
                          "poids_chimio_avant_conditionnement", 
                         "surpoids",
                          "surface_corporelle",
                          "sc_utilisee_si_capee",
                          "oms.cat",
                          "pathologie"
                         ),
  by="obesite", 
  digits=all_categorical()~ c(0,1)
)%>%
  add_p(
    pvalue_fun = scales::label_pvalue(accuracy = .001)
  )%>%
  add_overall(last = TRUE)
## Warning for variable 'poids_chimio_avant_conditionnement':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
## Warning for variable 'surface_corporelle':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
## Warning for variable 'sc_utilisee_si_capee':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
Characteristic 0, N = 331 1, N = 331 p-value2 Overall, N = 661
age 56 (38, 64) 56 (45, 58) 0.868 56 (42, 63)
Patients de + de 65 ans 6 (18.2%) 5 (15.2%) 0.741 11 (16.7%)
sexe 0.800
    F 13 (39.4%) 12 (36.4%) 25 (37.9%)
    M 20 (60.6%) 21 (63.6%) 41 (62.1%)
Poids 70 (63, 77) 96 (89, 105) <0.001 84 (70, 96)
Patients avec IMC >25 12 (36.4%) 33 (100.0%) <0.001 45 (68.2%)
Surface corporelle calculée 1.83 (1.76, 1.92) 2.10 (1.98, 2.30) <0.001 1.95 (1.82, 2.10)
Surface corporelle utilisée pour calcul des doses 1.83 (1.76, 1.92) 2.00 (1.98, 2.00) <0.001 1.95 (1.82, 2.00)
Score OMS 0 vs 1 et + 11 (34.4%) 16 (51.6%) 0.167 27 (42.9%)
    Unknown 1 2 3
Type d'hémopathie 0.131
    L hodgkin 14 (42.4%) 8 (24.2%) 22 (33.3%)
    L_plasmablastique 1 (3.0%) 0 (0.0%) 1 (1.5%)
    LBDGC 7 (21.2%) 12 (36.4%) 19 (28.8%)
    LF 1 (3.0%) 2 (6.1%) 3 (4.5%)
    lnh manteau 6 (18.2%) 10 (30.3%) 16 (24.2%)
    LT anaplasique 2 (6.1%) 0 (0.0%) 2 (3.0%)
    LTAI 2 (6.1%) 0 (0.0%) 2 (3.0%)
    Poppema 0 (0.0%) 1 (3.0%) 1 (1.5%)
1 Median (IQR); n (%)
2 Wilcoxon rank sum exact test; Pearson’s Chi-squared test; Wilcoxon rank sum test; Fisher’s exact test
##tableau descriptif traitements selon obesite ----
tbl_summary(
  data_beam, include = c("conditionnement_utilise", 
                         "nombre_de_ligne_antérieur",
                         "ligne_cat2", 
                         "ligne_cat3", 
                         "ligne_cat4",
                         "reponse_maladie_avant_beam",
                         "gcsf",
  ),
  by="obesite", 
  digits=all_categorical()~ c(0,1)
)%>%
  add_p(
    pvalue_fun = scales::label_pvalue(accuracy = .001)
  )%>%
  add_overall(last = TRUE)
## There was an error in 'add_p()/add_difference()' for variable 'gcsf', p-value omitted:
## Error in stats::chisq.test(x = structure(c(1, 1, 1, NA, 1, 1, 1, 1, 1, : 'x' et 'y' doivent avoir au moins 2 niveaux
Characteristic 0, N = 331 1, N = 331 p-value2 Overall, N = 661
Protocole intensification 0.159
    BEAM 5 jours 11 (33.3%) 6 (18.2%) 17 (25.8%)
    BEAM 6 jours 22 (66.7%) 27 (81.8%) 49 (74.2%)
Nombre de lignes antérieures 0.507
    1 8 (24.2%) 11 (33.3%) 19 (28.8%)
    2 18 (54.5%) 11 (33.3%) 29 (43.9%)
    3 5 (15.2%) 6 (18.2%) 11 (16.7%)
    4 1 (3.0%) 3 (9.1%) 4 (6.1%)
    5 1 (3.0%) 2 (6.1%) 3 (4.5%)
1 ligne anterieure et + 25 (75.8%) 22 (66.7%) 0.415 47 (71.2%)
2 lignes anterieures et + 7 (21.2%) 11 (33.3%) 0.269 18 (27.3%)
3 lignes anterieures et + 2 (6.1%) 5 (15.2%) 0.427 7 (10.6%)
Statut réponse avant autogreffe 0.641
    NR 5 (15.2%) 1 (3.0%) 6 (9.1%)
    RC 4 (12.1%) 5 (15.2%) 9 (13.6%)
    RC1 7 (21.2%) 5 (15.2%) 12 (18.2%)
    RC2 12 (36.4%) 13 (39.4%) 25 (37.9%)
    RC3 4 (12.1%) 6 (18.2%) 10 (15.2%)
    RP 0 (0.0%) 1 (3.0%) 1 (1.5%)
    RP4 1 (3.0%) 1 (3.0%) 2 (3.0%)
    RP5 0 (0.0%) 1 (3.0%) 1 (1.5%)
Patients avec G_CSF 32 (100.0%) 28 (100.0%) 60 (100.0%)
    Unknown 1 5 6
1 n (%)
2 Pearson’s Chi-squared test; Fisher’s exact test
##tableau descriptif bilans bio selon obesite ----
tbl_summary(
  data_beam, include = c("foie_sans_anomalie", 
                         "rein_sans_anomalie",
                         "hb", 
                         "plaquettes", 
                         "leucocyte",
                         "pnn",
  ),
  by="obesite", 
  digits=all_categorical()~ c(0,1)
)%>%
  add_p(
    pvalue_fun = scales::label_pvalue(accuracy = .001)
  )%>%
  add_overall(last = TRUE)
## Warning for variable 'hb':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
## Warning for variable 'plaquettes':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
## Warning for variable 'leucocyte':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
## Warning for variable 'pnn':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
Characteristic 0, N = 331 1, N = 331 p-value2 Overall, N = 661
Bilan hépatique sans anomalie 12 (36.4%) 7 (21.9%) 0.199 19 (29.2%)
    Unknown 0 1 1
Bilan rénal sans anomalie 24 (72.7%) 23 (69.7%) 0.786 47 (71.2%)
Hb avant BEAM (g/dl) 11.10 (10.20, 12.20) 11.60 (10.40, 12.80) 0.308 11.35 (10.40, 12.50)
Taux de plaquettes avant BEAM (G/l) 199 (160, 261) 212 (180, 265) 0.870 212 (161, 262)
    Unknown 0 1 1
GB avant BEAM (g/dl) 5.39 (4.66, 6.84) 6.55 (5.09, 7.78) 0.168 5.91 (4.69, 7.32)
PNN avant BEAM (G/l) 3.40 (2.70, 4.30) 4.50 (3.40, 5.50) 0.047 4.05 (2.80, 5.38)
1 n (%); Median (IQR)
2 Pearson’s Chi-squared test; Wilcoxon rank sum test
##tableau descriptif toxicités selon obesite ----
tbl_summary(
  data_beam, include = c("transfusion_cg", 
                         "transfusion_cp",
                         "duree_leucopenie_grade3", 
                         "duree_leucopenie_grade4", 
  ),
  by="obesite", 
  digits=all_categorical()~ c(0,1)
)%>%
  add_p(
    pvalue_fun = scales::label_pvalue(accuracy = .001)
  )%>%
  add_overall(last = TRUE)
## Warning for variable 'transfusion_cg':
## simpleWarning in stats::chisq.test(x = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, : L’approximation du Chi-2 est peut-être incorrecte
## Warning for variable 'duree_leucopenie_grade3':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
## Warning for variable 'duree_leucopenie_grade4':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible de calculer la p-value exacte avec des ex-aequos
Characteristic 0, N = 331 1, N = 331 p-value2 Overall, N = 661
Patients avec trasnfusion CG 27 (84.4%) 26 (83.9%) 0.956 53 (84.1%)
    Unknown 1 2 3
Patients avec trasnfusion CP 31 (93.9%) 32 (100.0%) 0.492 63 (96.9%)
    Unknown 0 1 1
Durée de Leucopénie Grade_3 postBEAM 11.0 (9.0, 13.0) 10.0 (8.0, 12.0) 0.548 10.0 (8.2, 12.0)
Durée de Leucopénie Grade_4 postBEAM 8.00 (7.00, 9.00) 8.00 (7.00, 9.00) 0.902 8.00 (7.00, 9.00)
1 n (%); Median (IQR)
2 Pearson’s Chi-squared test; Fisher’s exact test; Wilcoxon rank sum test
##Analyse des facteurs de risques de neutropénie grade 3
#Analyse univariée 
data_beam |>
  tbl_uvregression(
    y = duree_leucopenie_grade3,
    include = c(sexe.cat, age, old65, ligne_cat2, ligne_cat3, ligne_cat4, obesite, surpoids,
                sc_utilisee_si_capee, gcsf, oms.cat, alteration_foie, alteration_rein,
                sc.max, pnn),
    method = glm,
    pvalue_fun = scales::label_pvalue(accuracy = .001),
    exponentiate = FALSE
  ) |> 
  bold_labels()
Characteristic N Beta 95% CI1 p-value
age 66 0.00 -0.06, 0.05 0.889
Patients avec IMC >30 66 -0.27 -1.8, 1.3 0.732
Surface corporelle utilisée pour calcul des doses 66 -5.1 -11, 0.73 0.091
Score OMS 0 vs 1 et + 63 1.4 -0.17, 3.0 0.085
PNN avant BEAM (G/l) 66 -0.37 -0.66, -0.07 0.017
Patients avec G_CSF 60
Patients avec IMC >25 66 0.73 -0.93, 2.4 0.394
Patients de + de 65 ans 66 0.85 -1.2, 2.9 0.423
1 ligne anterieure et + 66 0.78 -0.93, 2.5 0.373
2 lignes anterieures et + 66 0.64 -1.1, 2.4 0.474
3 lignes anterieures et + 66 1.2 -1.3, 3.7 0.350
sexe.cat 66 1.9 0.39, 3.5 0.016
sc.max 66 -1.5 -3.0, 0.06 0.064
alteration_foie 65 1.7 0.04, 3.4 0.049
alteration_rein 66 0.85 -0.86, 2.6 0.335
1 CI = Confidence Interval
#Analyse mutlivariée 
##analyse avec obesite et variables sélectionnée
mod1 <- lm(
  duree_leucopenie_grade3 ~ obesite +sexe.cat + oms.cat+pnn+alteration_foie,
  pvalue_fun = scales::label_pvalue(accuracy = .001), 
  data = data_beam
)
## Warning: Dans lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## l'argument supplémentaire 'pvalue_fun' sera ignoré
summary(mod1)
## 
## Call:
## lm(formula = duree_leucopenie_grade3 ~ obesite + sexe.cat + oms.cat + 
##     pnn + alteration_foie, data = data_beam, pvalue_fun = scales::label_pvalue(accuracy = 0.001))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.480 -1.650 -0.426  1.622  7.267 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      10.6165     0.9832  10.798 2.63e-15 ***
## obesite          -0.5760     0.7639  -0.754   0.4540    
## sexe.cat          1.2525     0.7707   1.625   0.1098    
## oms.cat           1.5554     0.7665   2.029   0.0472 *  
## pnn              -0.3835     0.1448  -2.648   0.0105 *  
## alteration_foie   1.6101     0.8558   1.881   0.0651 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.915 on 56 degrees of freedom
##   (4 observations effacées parce que manquantes)
## Multiple R-squared:   0.25,  Adjusted R-squared:  0.1831 
## F-statistic: 3.734 on 5 and 56 DF,  p-value: 0.005485
exp(coefficients(mod1))
##     (Intercept)         obesite        sexe.cat         oms.cat             pnn 
##    4.080334e+04    5.621214e-01    3.499037e+00    4.737087e+00    6.814840e-01 
## alteration_foie 
##    5.003231e+00
exp(confint(mod1, level=0.95))
##                        2.5 %       97.5 %
## (Intercept)     5692.8510203 2.924568e+05
## obesite            0.1216863 2.596680e+00
## sexe.cat           0.7471456 1.638671e+01
## oms.cat            1.0200564 2.199877e+01
## pnn                0.5098485 9.108990e-01
## alteration_foie    0.9009557 2.778419e+01
mod1%>%tbl_regression(intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 11 8.6, 13 <0.001
Patients avec IMC >30 -0.58 -2.1, 0.95 0.5
sexe.cat 1.3 -0.29, 2.8 0.11
Score OMS 0 vs 1 et + 1.6 0.02, 3.1 0.047
PNN avant BEAM (G/l) -0.38 -0.67, -0.09 0.011
alteration_foie 1.6 -0.10, 3.3 0.065
1 CI = Confidence Interval
##analyse avec obesite et variables sélectionnée sans sexe
mod1 <- lm(
  duree_leucopenie_grade3 ~ obesite + oms.cat+pnn+alteration_foie,
  pvalue_fun = scales::label_pvalue(accuracy = .001), 
  data = data_beam
)
## Warning: Dans lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## l'argument supplémentaire 'pvalue_fun' sera ignoré
summary(mod1)
## 
## Call:
## lm(formula = duree_leucopenie_grade3 ~ obesite + oms.cat + pnn + 
##     alteration_foie, data = data_beam, pvalue_fun = scales::label_pvalue(accuracy = 0.001))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0282 -1.6049 -0.5528  1.8306  7.9718 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      11.1202     0.9464  11.750   <2e-16 ***
## obesite          -0.6025     0.7746  -0.778   0.4399    
## oms.cat           1.5718     0.7774   2.022   0.0479 *  
## pnn              -0.4184     0.1453  -2.880   0.0056 ** 
## alteration_foie   1.8213     0.8580   2.123   0.0381 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.957 on 57 degrees of freedom
##   (4 observations effacées parce que manquantes)
## Multiple R-squared:  0.2147, Adjusted R-squared:  0.1596 
## F-statistic: 3.895 on 4 and 57 DF,  p-value: 0.007268
exp(coefficients(mod1))
##     (Intercept)         obesite         oms.cat             pnn alteration_foie 
##    6.752457e+04    5.474542e-01    4.815351e+00    6.581101e-01    6.180057e+00
exp(confint(mod1, level=0.95))
##                        2.5 %       97.5 %
## (Intercept)     1.014937e+04 4.492461e+05
## obesite         1.160582e-01 2.582377e+00
## oms.cat         1.015152e+00 2.284152e+01
## pnn             4.919772e-01 8.803435e-01
## alteration_foie 1.108810e+00 3.444514e+01
mod1%>%tbl_regression(intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 11 9.2, 13 <0.001
Patients avec IMC >30 -0.60 -2.2, 0.95 0.4
Score OMS 0 vs 1 et + 1.6 0.02, 3.1 0.048
PNN avant BEAM (G/l) -0.42 -0.71, -0.13 0.006
alteration_foie 1.8 0.10, 3.5 0.038
1 CI = Confidence Interval
#REcherche facteurs explicatifs durée neutropénie
mod1 <- lm(
  duree_leucopenie_grade3 ~ sc_utilisee_si_capee +sexe.cat + oms.cat+pnn+alteration_foie,
  pvalue_fun = scales::label_pvalue(accuracy = .001), 
  data = data_beam
)
## Warning: Dans lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## l'argument supplémentaire 'pvalue_fun' sera ignoré
summary(mod1)
## 
## Call:
## lm(formula = duree_leucopenie_grade3 ~ sc_utilisee_si_capee + 
##     sexe.cat + oms.cat + pnn + alteration_foie, data = data_beam, 
##     pvalue_fun = scales::label_pvalue(accuracy = 0.001))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6015 -1.6467 -0.4798  1.7223  7.1263 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           14.7819     6.3279   2.336   0.0231 *
## sc_utilisee_si_capee  -2.2664     3.2822  -0.691   0.4927  
## sexe.cat               0.9536     0.8932   1.068   0.2903  
## oms.cat                1.4886     0.7572   1.966   0.0543 .
## pnn                   -0.3804     0.1453  -2.618   0.0113 *
## alteration_foie        1.5756     0.8519   1.850   0.0696 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.918 on 56 degrees of freedom
##   (4 observations effacées parce que manquantes)
## Multiple R-squared:  0.2488, Adjusted R-squared:  0.1817 
## F-statistic:  3.71 on 5 and 56 DF,  p-value: 0.005703
exp(coefficients(mod1))
##          (Intercept) sc_utilisee_si_capee             sexe.cat 
##         2.628335e+06         1.036847e-01         2.595143e+00 
##              oms.cat                  pnn      alteration_foie 
##         4.430758e+00         6.835940e-01         4.833720e+00
exp(confint(mod1, level=0.95))
##                            2.5 %       97.5 %
## (Intercept)          8.211535980 8.412730e+11
## sc_utilisee_si_capee 0.000144606 7.434350e+01
## sexe.cat             0.433551241 1.553395e+01
## oms.cat              0.972154558 2.019393e+01
## pnn                  0.510982421 9.145143e-01
## alteration_foie      0.877345747 2.663129e+01
mod1%>%tbl_regression(intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 15 2.1, 27 0.023
Surface corporelle utilisée pour calcul des doses -2.3 -8.8, 4.3 0.5
sexe.cat 0.95 -0.84, 2.7 0.3
Score OMS 0 vs 1 et + 1.5 -0.03, 3.0 0.054
PNN avant BEAM (G/l) -0.38 -0.67, -0.09 0.011
alteration_foie 1.6 -0.13, 3.3 0.070
1 CI = Confidence Interval
#recherche sans sc
mod1 <- lm(
  duree_leucopenie_grade3 ~ sexe.cat + oms.cat+pnn+alteration_foie,
  pvalue_fun = scales::label_pvalue(accuracy = .001), 
  data = data_beam
)
## Warning: Dans lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## l'argument supplémentaire 'pvalue_fun' sera ignoré
summary(mod1)
## 
## Call:
## lm(formula = duree_leucopenie_grade3 ~ sexe.cat + oms.cat + pnn + 
##     alteration_foie, data = data_beam, pvalue_fun = scales::label_pvalue(accuracy = 0.001))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.690 -1.656 -0.581  1.367  7.045 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      10.4633     0.9583  10.919 1.36e-15 ***
## sexe.cat          1.2649     0.7676   1.648  0.10491    
## oms.cat           1.4558     0.7522   1.935  0.05791 .  
## pnn              -0.3884     0.1441  -2.694  0.00925 ** 
## alteration_foie   1.5185     0.8439   1.799  0.07727 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.904 on 57 degrees of freedom
##   (4 observations effacées parce que manquantes)
## Multiple R-squared:  0.2424, Adjusted R-squared:  0.1893 
## F-statistic:  4.56 on 4 and 57 DF,  p-value: 0.002897
exp(coefficients(mod1))
##     (Intercept)        sexe.cat         oms.cat             pnn alteration_foie 
##    3.500570e+04    3.542619e+00    4.288113e+00    6.781447e-01    4.565178e+00
exp(confint(mod1, level=0.95))
##                        2.5 %       97.5 %
## (Intercept)     5137.3842551 2.385259e+05
## sexe.cat           0.7616111 1.647842e+01
## oms.cat            0.9508074 1.933926e+01
## pnn                0.5081139 9.050730e-01
## alteration_foie    0.8424256 2.473910e+01
mod1%>%tbl_regression(intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 10 8.5, 12 <0.001
sexe.cat 1.3 -0.27, 2.8 0.10
Score OMS 0 vs 1 et + 1.5 -0.05, 3.0 0.058
PNN avant BEAM (G/l) -0.39 -0.68, -0.10 0.009
alteration_foie 1.5 -0.17, 3.2 0.077
1 CI = Confidence Interval
#recherche sans sc ni sexe
mod1 <- lm(
  duree_leucopenie_grade3 ~ oms.cat+pnn+alteration_foie,
  pvalue_fun = scales::label_pvalue(accuracy = .001), 
  data = data_beam
)
## Warning: Dans lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## l'argument supplémentaire 'pvalue_fun' sera ignoré
summary(mod1)
## 
## Call:
## lm(formula = duree_leucopenie_grade3 ~ oms.cat + pnn + alteration_foie, 
##     data = data_beam, pvalue_fun = scales::label_pvalue(accuracy = 0.001))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.253 -1.810 -0.476  1.646  7.747 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      10.9651     0.9220  11.893  < 2e-16 ***
## oms.cat           1.4678     0.7632   1.923  0.05938 .  
## pnn              -0.4239     0.1446  -2.931  0.00483 ** 
## alteration_foie   1.7276     0.8466   2.041  0.04583 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.947 on 58 degrees of freedom
##   (4 observations effacées parce que manquantes)
## Multiple R-squared:  0.2063, Adjusted R-squared:  0.1653 
## F-statistic: 5.026 on 3 and 58 DF,  p-value: 0.003644
exp(coefficients(mod1))
##     (Intercept)         oms.cat             pnn alteration_foie 
##    5.782036e+04    4.339613e+00    6.544999e-01    5.627339e+00
exp(confint(mod1, level=0.95))
##                        2.5 %       97.5 %
## (Intercept)     9132.6089614 3.660722e+05
## oms.cat            0.9417921 1.999618e+01
## pnn                0.4899856 8.742503e-01
## alteration_foie    1.0336046 3.063739e+01
mod1%>%tbl_regression(intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 11 9.1, 13 <0.001
Score OMS 0 vs 1 et + 1.5 -0.06, 3.0 0.059
PNN avant BEAM (G/l) -0.42 -0.71, -0.13 0.005
alteration_foie 1.7 0.03, 3.4 0.046
1 CI = Confidence Interval
#recherche sans sc ni sexe ni oms
mod1 <- lm(
  duree_leucopenie_grade3 ~ pnn+alteration_foie,
  pvalue_fun = scales::label_pvalue(accuracy = .001), 
  data = data_beam
)
## Warning: Dans lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## l'argument supplémentaire 'pvalue_fun' sera ignoré
summary(mod1)
## 
## Call:
## lm(formula = duree_leucopenie_grade3 ~ pnn + alteration_foie, 
##     data = data_beam, pvalue_fun = scales::label_pvalue(accuracy = 0.001))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4869 -2.1247 -0.5354  1.6673  8.5929 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      11.2496     0.8805  12.777  < 2e-16 ***
## pnn              -0.3986     0.1455  -2.739  0.00803 ** 
## alteration_foie   1.9514     0.8196   2.381  0.02035 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.989 on 62 degrees of freedom
##   (1 observation effacée parce que manquante)
## Multiple R-squared:  0.1616, Adjusted R-squared:  0.1346 
## F-statistic: 5.977 on 2 and 62 DF,  p-value: 0.004229
exp(coefficients(mod1))
##     (Intercept)             pnn alteration_foie 
##    7.684787e+04    6.712311e-01    7.038747e+00
exp(confint(mod1, level=0.95))
##                        2.5 %       97.5 %
## (Intercept)     1.322046e+04 4.467014e+05
## pnn             5.018115e-01 8.978493e-01
## alteration_foie 1.367631e+00 3.622611e+01
mod1%>%tbl_regression(intercept = TRUE)
Characteristic Beta 95% CI1 p-value
(Intercept) 11 9.5, 13 <0.001
PNN avant BEAM (G/l) -0.40 -0.69, -0.11 0.008
alteration_foie 2.0 0.31, 3.6 0.020
1 CI = Confidence Interval