This is an R notebook.
clev = read.csv("ClevelandHeart.csv")
dim(clev)
[1] 303 12
mean(clev$Age)
[1] 54.43894
mean(clev[,1])
[1] 54.43894
clev[1,]
mean(clev[1,])
[1] NA
clev[1,3]
[1] "typical"
clev[1,1:5]
clev[1,c(1,3,5)]
clev[1:4,c(1,3,5)]
Summary Statistics
mean(clev$Age)
[1] 54.43894
median(clev$Age)
[1] 56
sd(clev$Age)
[1] 9.038662
IQR(clev$Age)
[1] 13
dim(clev)
[1] 303 12
length(clev$Age)
[1] 303
sum(clev$Age)
[1] 16495
max(clev$Age)
[1] 77
min(clev$Age)
[1] 29
z = clev$Age
z <- clev$Age
mean(clev$Age)
[1] 54.43894
Plots
hist(clev$Age,xlab="years",ylab="number patients",main="Figure 1",breaks=20)
boxplot(clev$Age)
boxplot(Age ~ Sex, data=clev)
plot(clev$Age, clev$RestBP,xlab="years",ylab="mm Hg")
Extracting subsets
z = clev[1:5,1:3]
z
z$Age > 60
[1] TRUE TRUE TRUE FALSE FALSE
sum(z$Age > 60)
[1] 3
mean(z$Age > 60)
[1] 0.6
over60 = z[z$Age>60,]
over60
z$ChestPain == "asymptomatic"
[1] TRUE TRUE TRUE TRUE TRUE
z
z[z$ChestPain=="asymptomatic",]
mean(over60$Age)
[1] 65.32911
mean(asyCP$Age)
[1] 55.72222
over60andASY = clev[(clev$Age>60) & (clev$ChestPain=="asymptomatic"),]
mean(clev$Fluoroscopy,na.rm=T)
[1] 0.6722408
sum(is.na(clev$Fluoroscopy))
[1] 4
which(is.na(clev$Fluoroscopy))
[1] 167 193 288 303
clevx = na.omit(clev)
dim(clevx)
[1] 297 12