library(tidyverse)
Airquality HW
Load the data set into your global environment
data("airquality")
head(airquality)
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
mean(airquality$Temp)
[1] 77.88235
median(airquality$Temp)
[1] 79
sd(airquality$Wind)
[1] 3.523001
var(airquality$Wind)
[1] 12.41154
$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September" airquality
<- airquality |>
p1 ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity")+
scale_fill_discrete(name = "Month",
labels = c("May", "June","July", "August", "September")) +
labs(x = "Monthly Temperatures from May - Sept",
y = "Frequency of Temps",
title = "Histogram of Monthly Temperatures from May - Sept, 1973",
caption = "New York State Department of Conservation and the National Weather Service") #provide the data source
p1
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
<- airquality |>
p2 ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September")) +
labs(x = "Monthly Temperatures from May - Sept",
y = "Frequency of Temps",
title = "Histogram of Monthly Temperatures from May - Sept, 1973",
caption = "New York State Department of Conservation and the National Weather Service")
p2
<- airquality |>
p3 ggplot(aes(Month, Temp, fill = Month)) +
labs(x = "Months from May through September", y = "Temperatures",
title = "Side-by-Side Boxplot of Monthly Temperatures",
caption = "New York State Department of Conservation and the National Weather Service") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3
<- airquality |>
p4 ggplot(aes(Month, Temp, fill = Month)) +
labs(x = "Monthly Temperatures", y = "Temperatures",
title = "Side-by-Side Boxplot of Monthly Temperatures",
caption = "New York State Department of Conservation and the National Weather Service") +
geom_boxplot()+
scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4
<- airquality |>
plotX ggplot(aes(Month, Ozone, fill = Month)) +
labs(x = "Month", y = "Ozone Quality",
title = "Point Diagram of Ozone Quality per Month",
caption = "New York State Department of Conservation and the National Weather Service") +
geom_point()
plotX
Warning: Removed 37 rows containing missing values or values outside the scale range
(`geom_point()`).
The graph above is a point diagram containing factors such as the month of the year and the Ozone Quality data collected by the New York state department of conservation and the national weather service. The diagram shows how Ozone quality varied throughout August through September. The Ozone had its peak quality in august, while it was at its lowest in May. The overall quality of the Ozone decreased slightly, but wasn’t at its lowest around the end of the time data was collected. The code above utilized ggplot with the geom_point() function to create the point diagram.