data(iris)
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 

Interpretacion

en la anterior tabla se presentan las estadisticas descriptivas del conjunto de datos iris, se observa que existen 50 muestras por cada especie

Histogramas

library(ggplot2)
ggplot(iris, aes(x=Sepal.Length))+
  geom_histogram(fill="tan")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

ggplot(iris, aes(x=Sepal.Width))+
  geom_histogram(fill="blue")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

ggplot(iris, aes(x=Petal.Length))+
  geom_histogram(fill="green")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

ggplot(iris, aes(x=Petal.Width))+
  geom_histogram(fill="gold")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

panel grafico

## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Diagrama de cajas por especie (comparativos)

ggplot(iris, aes(y=Sepal.Length, x=Species, fill=Species))+
  geom_boxplot()

ggplot(iris, aes(x = Species, y = Sepal.Width, fill = Species)) +
  geom_boxplot() 

ggplot(iris, aes(x = Species, y = Petal.Length, fill = Species)) +
  geom_boxplot()

ggplot(iris, aes(x = Species, y = Petal.Width, fill = Species)) +
  geom_boxplot()

Interpretación

  • La especie Setosa presenta unas dimensiones mĆ”s pequeƱas en Sepal Length.
  • La especie Virginica presenta unas dimensiones mĆ”s grandes en casi todas las variables.
ggplot(iris, aes(x=Sepal.Length, y=Petal.Length))+
  geom_jitter()+
  geom_smooth(method="lm", colour="red")
## `geom_smooth()` using formula = 'y ~ x'

ggplot(iris, aes(x=Sepal.Width, y=Petal.Width))+
  geom_jitter()+
  geom_smooth(method="lm", colour="blue")
## `geom_smooth()` using formula = 'y ~ x'

ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width))+
  geom_jitter()+
  geom_smooth(method="lm", colour="tan")
## `geom_smooth()` using formula = 'y ~ x'

ggplot(iris, aes(x=Petal.Length, y=Petal.Width))+
  geom_jitter()+
  geom_smooth(method="lm", colour="orange")
## `geom_smooth()` using formula = 'y ~ x'

cor(iris$Sepal.Length, iris$Petal.Length)
## [1] 0.8717538
cor(iris$Sepal.Width, iris$Petal.Width)
## [1] -0.3661259
cor(iris$Sepal.Length, iris$Sepal.Width)
## [1] -0.1175698
cor(iris$Petal.Length, iris$Petal.Width)
## [1] 0.9628654

Tabla de correlaciones principales

Variable 1 Variable 2 Correlación
Sepal.Length Petal.Length 0.872
Sepal.Width Petal.Width 0.819
Sepal.Length Sepal.Width -0.118
Petal.Length Petal.Width 0.963

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.