data(iris)
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
en la anterior tabla se presentan las estadisticas descriptivas del conjunto de datos iris, se observa que existen 50 muestras por cada especie
library(ggplot2)
ggplot(iris, aes(x=Sepal.Length))+
geom_histogram(fill="tan")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
ggplot(iris, aes(x=Sepal.Width))+
geom_histogram(fill="blue")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
ggplot(iris, aes(x=Petal.Length))+
geom_histogram(fill="green")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
ggplot(iris, aes(x=Petal.Width))+
geom_histogram(fill="gold")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
ggplot(iris, aes(y=Sepal.Length, x=Species, fill=Species))+
geom_boxplot()
ggplot(iris, aes(x = Species, y = Sepal.Width, fill = Species)) +
geom_boxplot()
ggplot(iris, aes(x = Species, y = Petal.Length, fill = Species)) +
geom_boxplot()
ggplot(iris, aes(x = Species, y = Petal.Width, fill = Species)) +
geom_boxplot()
ggplot(iris, aes(x=Sepal.Length, y=Petal.Length))+
geom_jitter()+
geom_smooth(method="lm", colour="red")
## `geom_smooth()` using formula = 'y ~ x'
ggplot(iris, aes(x=Sepal.Width, y=Petal.Width))+
geom_jitter()+
geom_smooth(method="lm", colour="blue")
## `geom_smooth()` using formula = 'y ~ x'
ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width))+
geom_jitter()+
geom_smooth(method="lm", colour="tan")
## `geom_smooth()` using formula = 'y ~ x'
ggplot(iris, aes(x=Petal.Length, y=Petal.Width))+
geom_jitter()+
geom_smooth(method="lm", colour="orange")
## `geom_smooth()` using formula = 'y ~ x'
cor(iris$Sepal.Length, iris$Petal.Length)
## [1] 0.8717538
cor(iris$Sepal.Width, iris$Petal.Width)
## [1] -0.3661259
cor(iris$Sepal.Length, iris$Sepal.Width)
## [1] -0.1175698
cor(iris$Petal.Length, iris$Petal.Width)
## [1] 0.9628654
Variable 1 | Variable 2 | Correlación |
---|---|---|
Sepal.Length | Petal.Length | 0.872 |
Sepal.Width | Petal.Width | 0.819 |
Sepal.Length | Sepal.Width | -0.118 |
Petal.Length | Petal.Width | 0.963 |
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.