Betting Behavior
Creating the Dataset
dat <- tribble(~participant, ~condition1, ~condition2, ~condition3,
"A", 1, 4, 7,
"B", 4, 8, 6,
"C", 2, 7, 9,
"D", 1, 5, 6
)
dat_long <- dat %>%
pivot_longer(cols = c(condition1, condition2, condition3),
names_to = "condition",
values_to = "score")
dat_long
## # A tibble: 12 × 3
## participant condition score
## <chr> <chr> <dbl>
## 1 A condition1 1
## 2 A condition2 4
## 3 A condition3 7
## 4 B condition1 4
## 5 B condition2 8
## 6 B condition3 6
## 7 C condition1 2
## 8 C condition2 7
## 9 C condition3 9
## 10 D condition1 1
## 11 D condition2 5
## 12 D condition3 6
Mean & SD
dat_long %>%
group_by(condition) %>%
summarise(mean = mean(score),
sd = sd(score))
## # A tibble: 3 × 3
## condition mean sd
## <chr> <dbl> <dbl>
## 1 condition1 2 1.41
## 2 condition2 6 1.83
## 3 condition3 7 1.41
Creating the Model
model <- lmer(score ~ condition + (1 | participant),
data = dat_long)
Normality: Shapiro-Wilk test
dat_long %>%
group_by(condition) %>%
summarise("S-W Stat" = shapiro_test(score)$statistic,
"p-value" = shapiro_test(score)$p.value)
## # A tibble: 3 × 3
## condition `S-W Stat` `p-value`
## <chr> <dbl> <dbl>
## 1 condition1 0.827 0.161
## 2 condition2 0.950 0.714
## 3 condition3 0.827 0.161
Sphericity
anova_test(data = dat_long,
dv = score,
wid = participant,
within = condition,
type = 3,
effect.size = "pes",
detailed = TRUE)
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 pes
## 1 (Intercept) 1 3 300 12 75.0 0.003 * 0.962
## 2 condition 2 6 56 10 16.8 0.003 * 0.848
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 condition 0.36 0.36
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF] p[HF]<.05
## 1 condition 0.61 1.22, 3.66 0.017 * 0.808 1.62, 4.85 0.007 *
library(ez)
aov_w <- ezANOVA(data = dat_long,
dv = score,
wid = participant,
within = condition,
detailed = TRUE)
## Warning: Converting "participant" to factor for ANOVA.
## Warning: Converting "condition" to factor for ANOVA.
aov_w
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 (Intercept) 1 3 300 12 75.0 0.003239037 * 0.9316770
## 2 condition 2 6 56 10 16.8 0.003478309 * 0.7179487
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 condition 0.36 0.36
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 condition 0.6097561 0.01668231 * 0.8082192 0.007460345 *
aov_result <- aov(score ~ condition +
Error(participant/condition), data=dat_long)
summary(aov_result)
##
## Error: participant
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 3 12 4
##
## Error: participant:condition
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 2 56 28.000 16.8 0.00348 **
## Residuals 6 10 1.667
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANOVA Table
apa.ezANOVA.table(aov_w, filename = "assignment_1_pt2_anova.doc")
##
##
## ANOVA results
##
##
## Predictor df_num df_den Epsilon SS_num SS_den F p ges
## (Intercept) 1.00 3.00 300.00 12.00 75.00 .003 .93
## condition 1.22 3.66 0.61 56.00 10.00 16.80 .017 .72
##
## Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator.
## Epsilon indicates Greenhouse-Geisser multiplier for degrees of freedom,
## p-values and degrees of freedom in the table incorporate this correction.
## SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator.
## ges indicates generalized eta-squared.
##
Pairwise Comparisons
emmeans(model,
pairwise ~ condition,
adjust = "bonferroni")
## $emmeans
## condition emmean SE df lower.CL upper.CL
## condition1 2 0.782 7.48 0.175 3.82
## condition2 6 0.782 7.48 4.175 7.82
## condition3 7 0.782 7.48 5.175 8.82
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## condition1 - condition2 -4 0.913 6 -4.382 0.0140
## condition1 - condition3 -5 0.913 6 -5.477 0.0046
## condition2 - condition3 -1 0.913 6 -1.095 0.9460
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: bonferroni method for 3 tests