data("iris")
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 

Interpretacion

En la tabla anterior se presentan estadisticas descriptivas para el conjunto de datos iris, donde se observa que hay 50 flores de cada especie

install.packages("ggplot2")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.5'
## (as 'lib' is unspecified)
library(ggplot2)
ggplot(iris, aes(x=Sepal.Length))+
  geom_histogram(fill="red")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

library(ggplot2)
ggplot(iris, aes(x=Sepal.Width))+
  geom_histogram(fill="blue")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

library(ggplot2)
ggplot(iris, aes(x=Petal.Length))+
  geom_histogram(fill="green")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

library(ggplot2)
ggplot(iris, aes(x=Petal.Width))+
  geom_histogram(fill="purple")
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## Panel Gráfico

install.packages("gridExtra")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.5'
## (as 'lib' is unspecified)
library(gridExtra)
g1 = ggplot(iris, aes(x=Sepal.Length))+
  geom_histogram(fill="red")

g2 = ggplot(iris, aes(x=Sepal.Width))+
  geom_histogram(fill="blue")

grid.arrange(g1, g2)
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

##diagrama de cajas comparaticas

gb1 = ggplot(iris, aes(y=Sepal.Length, x=Species, fill=Species))+
  geom_boxplot()
gb2= ggplot(iris, aes(y=Sepal.Width, x=Species, fill=Species))+
  geom_boxplot()
gb3= ggplot(iris, aes(y=Petal.Length, x=Species, fill=Species))+
  geom_boxplot()
gb4= ggplot(iris, aes(y=Petal.Width, x=Species, fill=Species))+
  geom_boxplot()

grid.arrange(gb1, gb2, gb3, gb4)

#interpretacion blabla bla

#diagrama de dispersion

ggplot(iris, aes(x=Sepal.Length, y=Petal.Length))+
  geom_jitter()+
  geom_smooth(method="lm", colour="purple")
## `geom_smooth()` using formula = 'y ~ x'

#se observa

cor(iris$Sepal.Length, iris$Petal.Length)
## [1] 0.8717538