# Load Packages
library(tidyverse)
library(tidyquant)
Ra <- c("TLSA", "NVDA", "AMZN") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 135 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 TLSA 2022-01-31 -0.239
## 2 TLSA 2022-02-28 -0.217
## 3 TLSA 2022-03-31 0.615
## 4 TLSA 2022-04-29 -0.0286
## 5 TLSA 2022-05-31 -0.353
## 6 TLSA 2022-06-30 0.136
## 7 TLSA 2022-07-29 -0.0267
## 8 TLSA 2022-08-31 0.0411
## 9 TLSA 2022-09-30 0.0263
## 10 TLSA 2022-10-31 -0.103
## # ℹ 125 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 45 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 35 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 135 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 TLSA 2022-01-31 -0.239 -0.101
## 2 TLSA 2022-02-28 -0.217 -0.0343
## 3 TLSA 2022-03-31 0.615 0.0341
## 4 TLSA 2022-04-29 -0.0286 -0.133
## 5 TLSA 2022-05-31 -0.353 -0.0205
## 6 TLSA 2022-06-30 0.136 -0.0871
## 7 TLSA 2022-07-29 -0.0267 0.123
## 8 TLSA 2022-08-31 0.0411 -0.0464
## 9 TLSA 2022-09-30 0.0263 -0.105
## 10 TLSA 2022-10-31 -0.103 0.0390
## # ℹ 125 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 18
## # Groups: symbol [3]
## symbol ActivePremium Alpha AlphaRobust AnnualizedAlpha Beta `Beta-`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TLSA 0.0465 0.0376 -0.0552 0.558 0.523 0.953
## 2 NVDA 0.504 0.031 0.0281 0.442 2.12 2.87
## 3 AMZN -0.0148 -0.0018 0.0016 -0.0216 1.36 1.50
## # ℹ 11 more variables: `Beta-Robust` <dbl>, `Beta+` <dbl>, `Beta+Robust` <dbl>,
## # BetaRobust <dbl>, Correlation <dbl>, `Correlationp-value` <dbl>,
## # InformationRatio <dbl>, `R-squared` <dbl>, `R-squaredRobust` <dbl>,
## # TrackingError <dbl>, TreynorRatio <dbl>
RaRb_skewness <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skewness
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 TLSA 1.60
## 2 NVDA -0.118
## 3 AMZN 0.133
TSLA & AMZN have a positively skewed distribution of returns